
Inheritance

Slides adapted from Berkeley cs61a

• Attributes Assignments

• Inheritance

• Object-Oriented Design
Inheritance vs. Composition vs. Mixin

• Multiple Inheritance

• Practice: Attributes Lookup

Attribute Assignment

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Instance Attribute Assignment:

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08
This expression
evaluates to an

object

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Instance Attribute Assignment:

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

But the name (“interest”) is
not looked up

tom_account.interest = 0.08
This expression
evaluates to an

object

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Instance Attribute Assignment:

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

But the name (“interest”) is
not looked up

Attribute
assignment

statement adds
or modifies the
attribute named

“interest” of
tom_account

tom_account.interest = 0.08
This expression
evaluates to an

object

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Instance Attribute Assignment:

Assignment to Attributes
Assignment statements with a dot expression on their left-hand side
affect attributes for the object of that dot expression (a.f = x)

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

But the name (“interest”) is
not looked up

Attribute
assignment

statement adds
or modifies the
attribute named

“interest” of
tom_account

tom_account.interest = 0.08

Account.interest = 0.04Class Attribute Assignment:

This expression
evaluates to an

object

class Account:
interest = 0.02
def init (self, holder):

self.holder = holder
self.balance = 0

...
tom_account = Account('Tom')

Instance Attribute Assignment:

Attribute Assignment Statements

Account class
attributes

interest: 0.02
(withdraw, deposit, init)

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02
(withdraw, deposit, init)

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, init)

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest: 0.02
(withdraw, deposit, init)

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest: 0.02
(withdraw, deposit, init)

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

Attribute Assignment Statements

balance:0
holder: 'Jim'

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

Instance
attributes of
jim_account

Instance
attributes of
tom_account

interest: 0.02 0.04
(withdraw, deposit, init)

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

interest: 0.02 0.04 0.05
(withdraw, deposit, init)

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

interest: 0.02 0.04 0.05
(withdraw, deposit, init)

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

interest: 0.02 0.04 0.05
(withdraw, deposit, init)

Instance
attributes of
jim_account

Instance
attributes of
tom_account

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

interest: 0.02 0.04 0.05
(withdraw, deposit, init)

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

balance:0
holder: 'Jim'
interest: 0.08

balance:0
holder: 'Tom'

Account class
attributes

interest: 0.02 0.04 0.05
(withdraw, deposit, init)

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

Inheritance

Inheritance

Inheritance is a technique for relating classes together

Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general
class, along with some special-case behavior

Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general
class, along with some special-case behavior

class <Name>(<Base Class>):
<suite>

Conceptually, the new subclass inherits attributes of its base class

The subclass may override certain inherited attributes

Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general
class, along with some special-case behavior

class <Name>(<Base Class>):
<suite>

Conceptually, the new subclass inherits attributes of its base class

The subclass may override certain inherited attributes

Using inheritance, we implement a subclass by specifying its
differences from the the base class

Inheritance Example

A CheckingAccount is a specialized type of Account

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')

Lower interest rate for checking accounts>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14

Deposits are the same

Withdrawals incur a $1 fee

Most behavior is shared with the base class Account

class CheckingAccount(Account):
"""A bank account that charges for withdrawals."""
withdraw_fee = 1
interest = 0.01
def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')

Lower interest rate for checking accounts>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14

Deposits are the same

Withdrawals incur a $1 fee

Looking Up Attribute Names on Classes
Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Looking Up Attribute Names on Classes

Found in CheckingAccount>>> ch.interest
0.01

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account. init

Looking Up Attribute Names on Classes

Found in CheckingAccount>>> ch.interest
0.01
>>> ch.deposit(20)
20

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Found in Account

>>> ch = CheckingAccount('Tom') # Calls Account. init

Looking Up Attribute Names on Classes

Found in CheckingAccount>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Found in Account

Found in CheckingAccount

>>> ch = CheckingAccount('Tom') # Calls Account. init

Looking Up Attribute Names on Classes

Found in CheckingAccount>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14

Base class attributes aren't copied into subclasses!

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Found in Account

Found in CheckingAccount

>>> ch = CheckingAccount('Tom') # Calls Account. init

demo_2: CheckingAccount

Object-Oriented Design

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects (Account)

Look up attributes on instances whenever possible

Designing for Inheritance

Attribute look-up
on base class

Preferred to CheckingAccount.withdraw_fee to
allow for specialized accounts

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects (Account)

Look up attributes on instances whenever possible

class CheckingAccount(Account):
"""A bank account that charges for withdrawals."""
withdraw_fee = 1
interest = 0.01
def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)

Designing for Inheritance

Attribute look-up
on base class

Preferred to CheckingAccount.withdraw_fee to
allow for specialized accounts

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects (Account)

Look up attributes on instances whenever possible

class CheckingAccount(Account):
"""A bank account that charges for withdrawals."""
withdraw_fee = 1
interest = 0.01
def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)

Assume in the future, a subclass

GreenC
heckin

gAccou
nt whose

interest is 0.01 but

withdraw_fee is only 0.23

Inheritance: Use It Carefully

Inheritance helps code reuse but NOT for code reuse!

Inheritance: Use It Carefully

Inheritance helps code reuse but NOT for code reuse!

Disadvantages of inheritance

• Breaks encapsulation

Inheritance forces the developer of the subclass to know
about the internals of the superclass
e.g., override HashSet’s add and addAll

Inheritance: Use It Carefully

Inheritance helps code reuse but NOT for code reuse!

Disadvantages of inheritance

• Breaks encapsulation

Inheritance forces the developer of the subclass to know
about the internals of the superclass

• Unnecessary cost for inheritance maintenance

e.g., the cost of superclasses’ fields storage, constructors
invocation, while only few behaviors of superclasses are needed

e.g., override HashSet’s add and addAll

Composition

Colloquially, composition means

“If you want to reuse some behavior, put that behavior in a
class, create an object of that class, include it as an attribute,
and call its methods when the behavior is needed”

Composition

Colloquially, composition means

“If you want to reuse some behavior, put that behavior in a
class, create an object of that class, include it as an attribute,
and call its methods when the behavior is needed”

• Composition does not break encapsulation, and does not affect
the types (all public interfaces remain unchanged)

Composition

Colloquially, composition means

“If you want to reuse some behavior, put that behavior in a
class, create an object of that class, include it as an attribute,
and call its methods when the behavior is needed”

• Composition does not break encapsulation, and does not affect
the types (all public interfaces remain unchanged)

• No need to involve in possibly complex hierarchy, and easy to
understand and implement

Inheritance vs. Composition

Guidance to choose inheritance or composition

• By conceptual difference

• By practical need

Inheritance vs. Composition

Guidance to choose inheritance or composition

• By conceptual difference

Inheritance represents “is-a” relationship
e.g., a checking account is a specific type of account

• By practical need

Composition represents “has-a” relationship
e.g., a bank has a collection of bank accounts it manages

Inheritance vs. Composition

Guidance to choose inheritance or composition

• By conceptual difference

Inheritance represents “is-a” relationship
e.g., a checking account is a specific type of account

• By practical need

Composition represents “has-a” relationship
e.g., a bank has a collection of bank accounts it manages

If type B wants to expose all public methods of type A (B can
be used wherever A is expected), favors inheritance

If type B needs only parts of behaviors exposed by type A,
favors composition

Inheritance vs. Composition

Guidance to choose inheritance or composition

• By conceptual difference

Inheritance represents “is-a” relationship
e.g., a checking account is a specific type of account

• By practical need

Composition represents “has-a” relationship
e.g., a bank has a collection of bank accounts it manages

If type B wants to expose all public methods of type A (B can
be used wherever A is expected), favors inheritance

If type B needs only parts of behaviors exposed by type A,
favors composition

demo_3: Bank

Inheritance vs. Composition

Implementing composition means we need to wrap the delegation logic
(delegated to the composed object) into certain methods, in which case
inheritance’s “direct reuse” seems more convenient.

Inheritance vs. Composition

Do we have some approach to
somewhat take the advantages of
both inheritance and composition?

Implementing composition means we need to wrap the delegation logic
(delegated to the composed object) into certain methods, in which case
inheritance’s “direct reuse” seems more convenient.

Mixin

Mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes, and without having
to use delegation to a composed object.

Mixin

Mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes, and without having
to use delegation to a composed object.

• Mixin is usually considered as “included” rather than “inherited”

Mixin

Mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes, and without having
to use delegation to a composed object.

• Mixin is usually considered as “included” rather than “inherited”

• But unlike composition (as also an “included” approach), the
mixin-ed methods appear to be inherited (no object delegation)

Mixin

Mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes, and without having
to use delegation to a composed object.

• Mixin is usually considered as “included” rather than “inherited”

• But unlike composition (as also an “included” approach), the
mixin-ed methods appear to be inherited (no object delegation)

• Unlike Python, some languages such as Ruby and Scala, has
language support to enforce the syntax/semantics of Mixin

• E.g., Mixin is called module in Ruby, and trait in Scala

Mixin

Mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes, and without having
to use delegation to a composed object.

• Mixin is usually considered as “included” rather than “inherited”

• But unlike composition (as also an “included” approach), the
mixin-ed methods appear to be inherited (no object delegation)

• Unlike Python, some languages such as Ruby and Scala, has
language support to enforce the syntax/semantics of Mixin

• E.g., Mixin is called module in Ruby, and trait in Scala

• Mixin is usually considered as a mean for multiple inheritance

Multiple Inheritance

Multiple Inheritance
class SavingsAccount(Account):

deposit_fee = 2
def deposit(self, amount):

return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverAccount marketing executive has an idea:
•Low interest rate of 1%
•A $1 fee for withdrawals
•A $2 fee for deposits
•A free dollar when you open your account

Multiple Inheritance
class SavingsAccount(Account):

deposit_fee = 2
def deposit(self, amount):

return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverAccount marketing executive has an idea:
•Low interest rate of 1%
•A $1 fee for withdrawals
•A $2 fee for deposits
•A free dollar when you open your account

class CleverAccount(CheckingAccount, SavingsAccount):
def init (self, account_holder):

self.holder = account_holder
self.balance = 1 # A free dollar!

Account

CheckingAccount SavingsAccount

CleverAccount

>>> tom= CleverAccount(‘Tom')
>>> tom.balance
1
>>> tom.deposit(20)
18
>>> tom.withdraw(5)
12

Instance attribute

SavingsAccount method

Multiple Inheritance

CheckingAccount method

Diamond Problem

A

B C

D

foo

foo foo

Diamond Problem

Method Resolution Order (MRO)

A

B C

D

foo

foo foo

B:foo or A:foo?

Diamond Problem

C3 Linearization algorithm for method resolution
while doing multiple inheritance

Method Resolution Order (MRO)

A

B C

D

foo

foo foo

B:foo or A:foo?

Practice: Attributes Lookup

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

z: -1
f: func f(self, x)

Global

A

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class B inherits from A>

Global

A

B

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

Global

A

B

C

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

Global

A

B

C

a

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:
n: 5

Global

A

B

C

a

b ……

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:
n: 5

4

Global

A

B

C

a

b ……

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:
n: 5

4

True

Global

A

B

C

a

b ……

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:
n: 5

4

True

False

Global

A

B

C

a

b ……

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:

<B inst>
..z.:

n: 5

4

True

False

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
z = -1
def f (s e l f , x) :

return B(x-1)

class B(A):
n = 4
def i n i t (s e l f , y) :

i f y:
s e l f . z = s e l f . f (y)

else:
s e l f . z = C(y+1)

class C(B):
def f (s e l f , x) :

return x

a = A()
b = B(1)
b.n = 5

>>> a.z == C.z

>>> C(2).n <class A>

Which evaluates
to an integer?

b.z
b .z .z
b. z. z. z
b . z . z . z . z
None of these

>>> a.z == b.z

<A instance>

z: -1
f: func f(self, x)

n: 4
init : func init (self, y)

<class C inherits from B>

<class B inherits from A>

f: func f(self, x)

<B instance>
z:

<B inst> <C inst>
z: 1..z.:

n: 5

4

True

False

Global

A

B

C

a

b

The X You Need To Understand In This Lecture

• Rules of attribute assignment

• Difference between inheritance and composition

• Rules of inheritance

• Rules of attribute lookup on classes

