
Object-Oriented Programming

Slides adapted from Berkeley cs61a

• OOP

• Classes and Objects

• Methods and Attributes

• Lookup up Attributes by Name

OOP, an example

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor 4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

John's
Account

Jack's
Account

John

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

John's
Account

Jack's
Account

John

Withdraw
$10

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

4

Object-Oriented Programming

A method for organizing programs

•Data abstraction

•Bundling together information and related behavior

•A metaphor for computation using distributed state

•Each object has its own local state

•Each object also knows how to manage its own local
state, based on method calls

•Method calls are messages passed between objects

•Several objects may all be instances of a common type

•Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

Apply for
a loan!

4

Classes

5

A class serves as a template for its instances

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

>>> a = Account ('John')

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

>>> a = Account ('John')
>>> a.holder
'John'

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Classes

5

A class serves as a template for its instances

Idea: All bank accounts have a balance
and an account holder; the Account class
should add those attributes to each newly
created instance

Idea: All bank accounts should have
withdraw and deposit behaviors that all
work in the same way

>>> a = Account ('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Better idea: All bank accounts share a
withdraw method and a deposit method

Class Statements

The Class Statement
class <name>:

<suite>

7

The Class Statement
class <name>:

<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

The Class Statement
class <name>:

<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

The Class Statement

The suite is executed when the
class statement is executed.

class <name>:
<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

The Class Statement

>>> class Clown:

The suite is executed when the
class statement is executed.

nose = 'big and red'...
...
...

def dance():
return 'No thanks'

class <name>:
<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

The Class Statement

>>> class Clown:

The suite is executed when the
class statement is executed.

nose = 'big and red'...
...
...

def dance():
return 'No thanks'

>>> Clown.nose
'big and red'

class <name>:
<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

The Class Statement

>>> class Clown:

The suite is executed when the
class statement is executed.

nose = 'big and red'...
...
...

def dance():
return 'No thanks'

>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'

class <name>:
<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

The Class Statement

>>> class Clown:

The suite is executed when the
class statement is executed.

nose = 'big and red'...
...
...

def dance():
return 'No thanks'

>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'
>>> Clown
<class ' main .Clown'>

class <name>:
<suite>

7

A class statement creates a new class and binds that class to
<name> in the first frame of the current environment

Assignment & def statements in <suite> create attributes of the
class (not names in frames)

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

An account instance

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

An account instance

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

An account instance

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

An account instance

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

An account instance

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

An account instance

balance: 0

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

An account instance

balance: 0 holder: 'Jim'

8

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

__init__ is called
a constructor

8

An account instance

balance: 0 holder: 'Jim'

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

__init__ is called
a constructor

8

An account instance

balance: 0 holder: 'Jim'

When a class is called:

1. A new instance of that class is created:

Object Construction
Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

2. The __init__ method of the class is called with the new object as its
first argument (named self), along with any additional arguments
provided in the call expression

class Account:
def init (self, account_holder):

self.balance = 0
self.holder = account_holder

__init__ is called
a constructor

8

An account instance

balance: 0 holder: 'Jim'

Object Identity

Every object that is an instance of a user-defined class has a unique identity:

9

>>> a = Account('John')
>>> b = Account('Jack')

Object Identity

Every object that is an instance of a user-defined class has a unique identity:

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True
>>> a is not b

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True
>>> a is not b
True

Binding an object to a new name using assignment does not create a new object:

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True
>>> a is not b
True

Binding an object to a new name using assignment does not create a new object:

>>> c = a
>>> c is a

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

Identity operators "is" and "is not" test if two expressions evaluate to the same
object:

>>> a is a
True
>>> a is not b
True

Binding an object to a new name using assignment does not create a new object:

>>> c = a
>>> c is a
True

Every object that is an instance of a user-defined class has a unique identity:

Every call to Account creates a new Account
instance. There is only one Account class.

9

>>> a = Account('John')
>>> b = Account('Jack')
>>> a.balance
0
>>> b.holder
'Jack'

Methods

Methods are functions defined in the suite of a class statement

class Account:

Methods

11

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

Methods

11

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):

Methods

11

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount

Methods

11

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

def withdraw(self, amount):

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

def withdraw(self, amount):
if amount > self.balance:

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

def withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds’

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

def withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds’
self.balance = self.balance - amount

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

def withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds’
self.balance = self.balance - amount
return self.balance

Methods are functions defined in the suite of a class statement

class Account:

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

self should always be bound to an instance of the Account class

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Methods

11

These def statements create function objects as always, but their names
are bound as attributes of the class (not bound to the particular frame)

def withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds’
self.balance = self.balance - amount
return self.balance

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Dot notation automatically supplies the first argument to a method

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Dot notation automatically supplies the first argument to a method

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Dot notation automatically supplies the first argument to a method

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Invoked with one argument

Dot notation automatically supplies the first argument to a method

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Bound to self Invoked with one argument

Dot notation automatically supplies the first argument to a method

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Invoking Methods

All invoked methods have access to the object via the self parameter, and so
they can all access and manipulate the object's state

class Account:
...

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

Defined with two parameters

12

Bound to self Invoked with one argument

(demo_1)

Attributes

Class Attributes
Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance (Instance attributes?)

class Account:

interest = 0.02 # A class attribute

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

Class Attributes
Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance (Instance attributes?)

class Account:

interest = 0.02 # A class attribute

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')

Class Attributes
Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance (Instance attributes?)

class Account:

interest = 0.02 # A class attribute

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest

>>> jim_account.interest
0.02

0.02

Class Attributes

The interest attribute is not part of
the instance; it's part of the class!

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance (Instance attributes?)

class Account:

interest = 0.02 # A class attribute

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest

>>> jim_account.interest
0.02

0.02

Class Attributes

The interest attribute is not part of
the instance; it's part of the class!

Class attributes are "shared" across all instances of a class
because they are attributes of the class, not the instance (Instance attributes?)

class Account:

interest = 0.02 # A class attribute

def init (self, account_holder):
self.balance = 0
self.holder = account_holder

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest

>>> jim_account.interest
0.02

0.02

Methods are also considered
as the attributes of the class

Accessing Attributes

15

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10
>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or
• One of the attributes of its class

(We will examine this in details later)

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Object + Function= Bound Method

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Object + Function= Bound Method

>>> type(Account.deposit)
<class 'function'>

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Object + Function= Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Object + Function= Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1000)
1000

Function: all arguments
within parentheses

Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which
that method will be invoked

Object + Function= Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1000)
1000
>>> tom_account.deposit(1021)
2021

Function: all arguments
within parentheses

Method: One object before the
dot and other arguments
within parentheses

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>?

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>?

We define class to define objects:
type(my_object) -> MyClass

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python,
what we use to define “class objects”?

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python,
what we use to define “class objects”?

We use metaclass to define classes:
type(MyClass) -> MetaClass

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python,
what we use to define “class objects”?

We use metaclass to define classes:
type(MyClass) -> MetaClass

my_object = MyClass()
MyClass = MetaClass()

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python,
what we use to define “class objects”?

We use metaclass to define classes:
type(MyClass) -> MetaClass

my_object = MyClass()
MyClass = MetaClass()

type is the metaclass in Python

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python,
what we use to define “class objects”?

We use metaclass to define classes:
type(MyClass) -> MetaClass

my_object = MyClass()
MyClass = MetaClass()

type is the metaclass in Python

ACGN = type(‘ACGN’,

(tuple for parent classes),

{dic for attribute pairs})

print(ACGN)

type(ACGN)

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class

Methods

Functions are objects

Bound methods are also objects: a
function that has its first parameter
"self" already bound to an instance

Dot expressions evaluate to bound
methods for class attributes that are
functions

<instance>.<method_name>

Terminology:

Python object system:

Looking Up Attributes by Name

6

<expression> . <name>

Looking Up Attributes by Name

6

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

<expression> . <name>

Looking Up Attributes by Name

6

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

2. <name> is matched against the instance attributes of that object; if
an attribute with that name exists, its value is returned

<expression> . <name>

(demo: lls.balance)

Looking Up Attributes by Name

6

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

2. <name> is matched against the instance attributes of that object; if
an attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute
value (if no such class attribute exists, an AttributeError is reported)

<expression> . <name>

(demo: lls.interest,
lls.noSuchAttribute)

Looking Up Attributes by Name

6

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

2. <name> is matched against the instance attributes of that object; if
an attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute
value (if no such class attribute exists, an AttributeError is reported)

4. That value is returned unless it is a function, in which case a bound method
is returned instead

<expression> . <name>

(demo_2)

• The basic idea of OOP

The X You Need To Understand In This Lecture

• Classes vs. Objects

• Functions vs. Methods

• Instance attributes vs. Class attributes

Understanding the ‘self’ keyword

What happens when instantiating an object from a class (object + __init__)

• The rules for looking up attributes

