
Object-Oriented Programming

Slides adapted from Berkeley cs61a



• OOP

• Classes and Objects

• Methods and Attributes

• Lookup up Attributes by Name



OOP, an example
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A class serves as a template for its instances

Idea: All bank accounts have a balance 
and an account holder; the Account class
should add those attributes to each newly 
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These def statements create function objects as always,  but their names 
are bound as attributes of the class (not bound to the particular frame)

def withdraw(self, amount):
if amount > self.balance:  

return 'Insufficient funds’
self.balance = self.balance - amount  
return self.balance
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as the attributes of the class



Accessing Attributes

15

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')  
10
>>> hasattr(tom_account, 'deposit')  
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or
• One of the attributes of its class

(We will examine this in details later)
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Methods and Functions

Python distinguishes between:
• Functions, which we have been creating since the beginning of the course, and

•Bound methods, which couple together a function and the object on which 
that method will be invoked

Object + Function= Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1000)
1000
>>> tom_account.deposit(1021)
2021

Function: all arguments 
within parentheses

Method: One object before the 
dot and  other arguments 
within parentheses
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Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes  

>>> type(tom_account)
<class '__main__.Account'>

>>> type(Account)
<class 'type’>

We define class to define objects:
type(my_object) -> MyClass

?
As classes are objects in Python, 
what we use to define “class objects”?

We use metaclass to define classes: 
type(MyClass) -> MetaClass

my_object = MyClass()
MyClass = MetaClass()

type is the metaclass in Python

ACGN = type(‘ACGN’,

(tuple for parent classes),

{dic for attribute pairs})

print(ACGN)

type(ACGN)



Class  
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes  

Instance attribute: attribute of an instance

Class attribute: attribute of the class

Methods

Functions are objects

Bound methods are also objects: a 
function  that has its first parameter 
"self" already bound to an instance

Dot expressions evaluate to bound 
methods for class attributes that are
functions

<instance>.<method_name>

Terminology:

Python object system:
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To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

2. <name> is matched against the instance attributes of that object; if 
an attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute
value (if no such class attribute exists, an AttributeError is reported)

<expression> . <name>

(demo: lls.interest,
lls.noSuchAttribute)
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To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object
of the dot expression

2. <name> is matched against the instance attributes of that object; if 
an attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute
value (if no such class attribute exists, an AttributeError is reported)

4. That value is returned unless it is a function, in which case a bound method 
is returned instead

<expression> . <name>

(demo_2)



• The basic idea of OOP

The X You Need To Understand In This Lecture

• Classes vs. Objects

• Functions vs. Methods

• Instance attributes vs. Class attributes

Understanding the ‘self’ keyword

What happens when instantiating an object from a class (object + __init__)

• The rules for looking up attributes


