
Lecture 13

Iterators & Generators

Announcements

http://cs61a.org

Iterators

Definitions

● Lazy evaluation - Delays evaluation of an expression until its value

is needed

● Iterable - An object capable of returning its members one at a time.

Examples include all sequences (lists, strings, tuples) and some

non-sequence types (dictionaries).

● Iterator - An object that provides sequential access to values, one

by one.

○ All iterators are iterables. Not all iterables are iterators.

● Metaphor: Iterables are books & Iterators are bookmarks

Iterators

How do we create iterators?

iter(iterable): Return an iterator

over the elements of an iterable value.

- This method creates a bookmark

from a book starting at the front.

next(iterator): Return the next

element in an iterator.

- Returns the current page and

moves the bookmark to the next

page.

- The iterator remembers where you

left off. If the current page is the

end of the book, error.

>>> s = [1, 2, 3] # the book
>>> one, two = iter(s), iter(s)

one

two

one

two two + three

one

two + three

>>> next(one) # move bookmark 1
1

>>> next(two) # move bookmark 2
1

>>> next(one) # move bookmark 1
2

>>> next(two) # move bookmark 2
2

>>> three = iter(two)
>>>
>>> next(three) # move bookmark 2 & 3
3

>>> next(two) # Ran out of pages
Stop Iteration

two

Define a function that returns an iterator that outputs up to the nth value in the

Fibonacci sequence. You can assume n will always be 2 or greater

● Remember, iter(iterable) creates an iterator. Lists are iterables.

def fib_iter(n):
"""
>>> x = fib_iter(4)
>>> next(x)
0
>>> next(x)
1
>>> next(x)
1
>>> next(x)
2
"""

Check Your Understanding: Fibonacci

Have you missed me?

Exceptions / Errors

Exceptions / Errors

Sometimes, computer programs behave in non-standard ways

- A function receives a argument value of an improper type

- Some resources (such as a file) is not available

- A network connection is lost in the middle of data transmission

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

Raise Exceptions

Exceptions are raised with a raise statement

raise <expression>

<expression> must be an Exception, which is created like so:

E.g., TypeError('Error message')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn’t found

KeyError -- A key wasn’t found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Try Statements

Try statements handle exceptions

try:
<try suite>

except <exception class> as <name>:
<except suite>

Execution rule:

1. The <try suite> is executed

first

2. If, during the course of

executing the <try suite>, an

exception is raised that is

not handled otherwise then

the <except suite> is

executed with <name>

bound to the exception

>>>try:
... x = 1/0
... except ZeroDivisionError as e:
... print('Except a', type(e))
... x = 0
Except a <class ‘ZeroDivisionError’>
>>> x
0

Back to Iterators - The For Statement

for <name> in <expression>:
<suite>

1. Evaluate the header <expression>, which must evaluate to an iterable

object.

2. For each element in that sequence, in order:

a. Bind <name> to that element in the first frame of the current

environment

b. Execute the <suite>

When executing a for statement, iter returns an iterator and next provides

each item:

>>> counts = [1, 2, 3]
>>> for item in counts:
... print(item)
1
2
3

>>> counts = [1, 2, 3]
>>> items = iter(counts)
>>> try:
... while True:
... item = next(items)
... print(item)
... except StopIteration:
... pass
1
2
3

The same!
These are
equivalent!

StopIteration is raised whenever next is
called on an empty iterator

Generators

Definitions and Rules

Some definitions:

● Generator: An iterator created automatically by calling a

generator function.

● Generator function: A function that contains the keyword yield
anywhere in the body

When a generator function is called, it returns a generator instead of

going into the body of the function. The only way to go into the body

of a generator function is by calling next on the returned generator.

Yielding values are the same as returning values except yield
remembers where it left off.

Generators and Generator Functions

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object>
>>> next(t)
StopIteration

We are allowed to call next on

generators because generators are a

type of iterator.

Calling next on a generator goes into

the function and evaluates to the first

yield statement. The next time we

call next on that generator, it

resumes where it left off (just like

calling next on any iterator!)

Once the generator hits a return

statement, it raises a

StopIteration

Generators to Represent Infinite Sequences

Iterators are used to represent infinite sequences. In this course, when

we ask you to write an iterator, we want you to write a generator.

>>> def naturals():
... x = 0
... while True:
... yield x
... x += 1

>>> nats = naturals()
>>> next(nats)
0
>>> next(nats)
1
>>> nats1, nats2 = naturals(), naturals()
>>> [next(nats1) * next(nats2) for _ in range(5)]
[0, 1, 4, 9, 16] # Squares the first 5 natural numbers

Check Your Understanding: Generators

Given the following generator function, what will the call to gen()

return?

>>> def gen():
... start = 0
... while start != 10:
... yield start
... start += 1

>>> gen()

Check Your Understanding: Generators

def map_gen(fn, iter1):
"""
>>> i = iter([1, 2, 3, 4])
>>> fn = lambda x: x**2
>>> m = map_gen(fn, i)
>>> next(m)
1
>>> next(m)
4
>>> next(m)
9
>>> next(m)
16
>>> next(m)
Traceback (most recent call last):

...
StopIteration
"""
"*** YOUR CODE HERE ***"

Generators can Yield From Iterators

def a_then_b(a, b):
for x in a:

yield x
for x in b:

yield x

def a_then_b(a, b):
yield from a
yield from b

A yield from statement yields all values from an iterable.

def countdown(k):
if k == 0:

yield 'Blast off’
else:

yield k
yield from countdown(k-1)

Summary

● We finally made it! What did we even talk about…

● Iterators (bookmarks) are used to iterate over iterables (books).

○ We use the iter method to turn iterables into iterators and we use the

next method to get the next element.

● Exceptions can be raised and handled.

● Generators are how we implement iterators in this course and use

yield statements.

○ We can use yield from to yield multiple values from an iterable.

