
Iterators

Announcements

Iterators

Iterators

!4

Iterators

!4

A container can provide an iterator that provides access to its elements in order

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5
>>> next(u)
4

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>> s = [3, 4, 5]
>>> t = iter(s)
>>> next(t)
3
>>> next(t)
4
>>> u = iter(s)
>>> next(u)
3
>>> next(t)
5
>>> next(u)
4

(Demo)

Dictionary Iteration

Views of a Dictionary

!6

Views of a Dictionary

!6

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)
>>> next(i)
('three', 3)
>>> next(i)
('zero', 0)

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values

• The order of items in a dictionary is the order in which they were added (Python 3.6+)

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> d['zero'] = 0
>>> k = iter(d.keys()) # or iter(d)
>>> next(k)
'one'
>>> next(k)
'two'
>>> next(k)
'three'
>>> next(k)
'zero'

>>> v = iter(d.values())
>>> next(v)
1
>>> next(v)
2
>>> next(v)
3
>>> next(v)
0

An iterable value is any value that can be passed to iter to produce an iterator

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items())
>>> next(i)
('one', 1)
>>> next(i)
('two', 2)
>>> next(i)
('three', 3)
>>> next(i)
('zero', 0)

(Demo)

For Statements

(Demo)

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable): Iterate over func(x) for x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable): Create a list containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

(Demo)

Generators

Generators and Generator Functions

!11

Generators and Generator Functions

!11

>>> def plus_minus(x):
... yield x
... yield -x

Generators and Generator Functions

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)

Generators and Generator Functions

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3

Generators and Generator Functions

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3

Generators and Generator Functions

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

!11

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

!11

(Demo)

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators & Iterators

Generators can Yield from Iterators

!13

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

>>> list(countdown(5))
[5, 4, 3, 2, 1]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

def countdown(k):
 if k > 0:
 yield k
 yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

>>> list(countdown(5))
[5, 4, 3, 2, 1]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

def countdown(k):
 if k > 0:
 yield k
 yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

>>> list(countdown(5))
[5, 4, 3, 2, 1]

(Demo)

