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Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs
e In Python, every value is an object

e All objects have attributes

e A lot of data manipulation happens through object methods

e Functions do one thing; objects do many related things
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Representing Strings: the Unicode Standard
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o | 7 H == oD
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® 109,000 characters

® 93 scripts (organized)
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Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case
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® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order
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® 93 scripts (organized)
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Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
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Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

5| EBE | HE | Hi - | HEb | O
B | R B | B | A | R | O
8071 8072 8073 8074 8075 8076 8077 8078

H | gR 1|/ gt | H=e | HBE
it IR | A | RS E BB R G
8171 8172 8173 8174 8175 8176 8177 8178

A Hh

B0 | 6 | b | i | B W | ga
8271 8272 8273 8274 8275 8276 8277 8278
e I o el [ S e e i = o —H- | e
2 o A | 2=
8371 8372 8373 8374 8375 8376 8377 8378
A A A A AN

http://ian-,

albert.com/unicode_chart/unichart-chinese. jpg




Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
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® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character
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® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character
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Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character
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The same object can change in value throughout the course of computation

jessica [~
Unicode

same_person | —
character

GIRL name




Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» @

Unicode
character

WOMAN name




Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» ﬁi}ﬁ

Unicode
OLDER character

WOMAN name




Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» @EEB
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation



Some Objects Can Change
[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~ -
same_person | —» ‘fETT
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries



Some Objects Can Change
[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~ -
same_person | —» ‘fETT
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}
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>>> len(four)

Interactive Diagram



Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

four = [1, 2, 3, 4]
len(four)

mystery(four)
len(four)

four = [1, 2, 3, 4]
len(four)

another_mystery() # No
len(four)

def mystery(s):

def another_mystery():

arguments'!

Interactive Diagram

s.pop()
s.pop()

four.pop()
four.pop()

or

def mystery(s):
s[2:1 = []
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects
>>> X = 2
>>> X + X
Name change:

>>> X + X
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Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00z€ Can

1

>>> turtle = [1, 2, 3]

>>> 00ze()

>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X

4

>>> X

+

2
X
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Immutable values are protected from mutation
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>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:
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00z€ Can
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>>> turtle = [1, 2, 3]

>>> o0o0ze()
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>>> X
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Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00z€ Can

l

>>> turtle = [1, 2, 3]

>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X

4

>>> X
>>> X

6

+

2
X

3

Object mutation:

>>> x = [1, 2]
>>> X + X

>>> X + X
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaii{é Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

6

Name change:

>>> x = [1, 2]
>>> X + X

Object mutation: [1, 2, 1, 2]

>>> X + X
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaii{é Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
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['Anything could be inside!']
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>>> X = 2
>>> X + X
4

>>> X 3
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6
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>>> X + X
[1, 2, 1, 2]
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaiiié Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X

Name change: 4
>>> X = 3
>>> X + X
6

>>> x = [1, 2]
>>> X + X
[1, 2, 1, 2]

Object mutation: >>> x.append(3)

>>> X + X
[1, 2, 3, 1, 2, 3]
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
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The value of an expression can change because of changes in names or objects
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>>> X + X >>>
Name change: 4 a Object mutation: 1,
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X X
+ 1
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ERROR



Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects
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6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']
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Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
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Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

([4, 21, 3)
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-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> a = [10] >>> g = [10]

>>> b = a >>> b = [10]

>>> a == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g == >>> a

True [10]

>>> g >>> b

[10, 20] [10, 20]

>>> P >>> g ==

[10, 20] False
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Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)
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Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
- s.append(3) f v///”—%>

return len(s) fist
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1 S |
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Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
- s.append(3) f ¢///”—_>

return len(s) fist

0 1 2
;;;> £0) fl: f [parent=Global] 3|13|3
1 S |
>>> () Return
2 value | Each time the function
>>> () is called, s is bound
3 f2: f [parent=Global] to the same value!
S
Return
value»2

f3: f [parent=Global]
s L

Return
value

Interactive Diagram



