61A Lecture 12

Announcements

Objects

(Demo)

Objects

* Objects represent information

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions

* Objects can represent things, but also properties, interactions, & processes

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes

e A type of object is called a class; classes are first-class values in Python

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python

®* Object-oriented programming:

Objects

* Objects represent information

* They consist of data and behavior, bundled together to create abstractions

* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs

e In Python, every value is an object

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs
e In Python, every value is an object

e All objects have attributes

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs
e In Python, every value is an object

e All objects have attributes

e A lot of data manipulation happens through object methods

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
e A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

e Special syntax that can improve the composition of programs
e In Python, every value is an object

e All objects have attributes

e A lot of data manipulation happens through object methods

e Functions do one thing; objects do many related things

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
O|NUL [SOH | STX |ETX | EOT |ENQ [ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
1|DLE |DC1 |DC2 |DC3|DC4 |[NAK | SYN |[ETB |CAN | EM |SUB |ESC| FS | GS | RS | US
2 v l#ss]al JTCHY[*x]+]1- /
31 0 1 2 3 4 5 6 7 8 9 - H < = > ?
4| @ A B C D E F G H I J K L M N 0
5| P Q R S T U ') W X Y Z [\ 1 - —
6|l - |a|[b|c|d|e]|]f|I9|h]|i]|j|k]l1]|m|[n]o
72| Pl 9| r s | t ul|lvi|iw|x]|y|z { | } | -~ |DEL

Representing Strings: the ASCII Standard

3 bits

NGO OLBERIWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH |STX [ETX |EOT |ENQ |ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB |CAN | EM |SUB |[ESC| FS | GS | RS | US

v l#ss]al JTCHY[*x]+]1- /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\ 1 -
~la|lb|lc|d|e|f | 9| h|[i1]|j]|k|]L]|m]n]|o
Plalr|s|t]ul|v]|w] x|y]|lz]|{]|]1] 3|~ |DEL

Representing Strings: the ASCII Standard

3 bits

NGO OLBERIWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH [STX |ETX | EOT |ENQ [ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB |CAN | EM |SUB |[ESC| FS | GS | RS | US

! | # S| % | & () | x| + | = /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\ 1 - —
~la|lb|lc|d|e|f | 9| h|[i1]|j]|k|]L]|m]n]|o
Plalr|s|t]ul|v]|w] x|y]|lz]|{]|]1] 3|~ |DEL

16 columns: 4 bits

Representing Strings: the ASCII Standard

3 bits

NGO OLBERIWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH [STX |ETX | EOT |ENQ [ACK |BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB |CAN | EM |SUB |[ESC| FS | GS | RS | US

! | # S| % | & () | x| + | = /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\ 1 - —
~la|lb|lc|d|e|f | 9| h|[i1]|j]|k|]L]|m]n]|o
Plalr|s|t]ul|v]|w] x|y]|lz]|{]|]1] 3|~ |DEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B C D E F

[o[nuL [soH[sTx[ETX [EOT [ENQ [ACK[BEL|BS [HT [LF [VT [FF [CR [so [sI
4| 1| pLe [pc1[pc2[pc3 [pca [NAK [sYN[ETB [cAN | EM [suB[ESc| Fs [Gs [Rs [us
a2 V[o | # | $ | % | &] | () |+]|+]|- 7
m{3le|1]2]3]a]s5][e|[7[8][o|:]:i]<[=[>]-¢2
=lalef[a]B|c|p]E[F]a|H][I]a][k][L][M[N]oO
IS5 PlQf[R[Ss|T]JUV]|W|[X|[Y[Z|[]T]\N]T]~]-
“l6l] - [alb|[c]d]e]f|]a][n|[i[i[k]1][m]|[n]o
°°__ 72felalr s t]ulviw][x|y [z {713~]pEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B C D E F

[o[nuL [soH[sTx[ETX [EOT [ENQ [ACK[BEL|BS [HT [LF [VT [FF [CR [so [sI
4| 1| pLe [pc1[pc2[pc3 [pca [NAK [sYN[ETB [cAN | EM [suB[ESc| Fs [Gs [Rs [us
a2 V[o | # | $ | % | &] | () |+]|+]|- 7
m{3le|1]2]3]a]s5][e|[7[8][o|:]:i]<[=[>]-¢2
=lalef[a]B|c|p]E[F]a|H][I]a][k][L][M[N]oO
IS5 PlQf[R[Ss|T]JUV]|W|[X|[Y[Z|[]T]\N]T]~]-
“l6l] - [alb|[c]d]e]f|]a][n|[i[i[k]1][m]|[n]o
°°__ 72felalr s t]ulviw][x|y [z {713~]pEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset

®* Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

"Line feed" (\n)]

ASCII Code Chart {
A B

©,1,2,3,;4,;5,;6,;7,8,09 C,D,E,F

[o[nuL [soH[sTx[ETX [EOT [ENQ [ACK[BEL| BS [HT [LF'[VT [FF [CR [so [sI
4| 1| pLe [pc1[pc2[pc3 [pca [NAK [sYN[ETB [cAN | EM [suB[ESc| Fs [Gs [Rs [us
a2 V[o | # | $ | % | &] | () |+]|+]|- 7
m{3le|1]2]3]a]s5][e|[7[8][o|:]:i]<[=[>]-¢2
=lalef[a]B|c|p]E[F]a|H][I]a][k][L][M[N]oO
IS5 PlQf[R[Ss|T]JUV]|W|[X|[Y[Z|[]T]\N]T]~]-
“l6l] - [alb|[c]d]e]f|]a][n|[i[i[k]1][m]|[n]o
°°__ 72felalr s t]ulviw][x|y [z {713~]pEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset

®* Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

[Bell (\a)lAégfI Code Chart { Line feed" (\n)]
0 1 2 3 4 5 7 8 9 A B C D E F

[o[nuL [soH[sTx[ETX [EOT [ENQ [ACKTBEL| BS [HT [LF'[vT [FF [CR [so [sI
4| 1| pLe [pc1[pc2[pc3 [pca [NAK [sYN[ETB [cAN | EM [suB[ESc| Fs [Gs [Rs [us
a2 V[o | # | $ | % | &] | () |+]|+]|- 7
m{3le|1]2]3]a]s5][e|[7[8][o|:]:i]<[=[>]-¢2
=lalef[a]B|c|p]E[F]a|H][I]a][k][L][M[N]oO
IS5 PlQf[R[Ss|T]JUV]|W|[X|[Y[Z|[]T]\N]T]~]-
“l6l] - [alb|[c]d]e]f|]a][n|[i[i[k]1][m]|[n]o
°°__ 72felalr s t]ulviw][x|y [z {713~]pEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset

®* Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

[Bell (\a)lAégfI Code Chart { Line feed" (\n)]
0 1 2 3 4 5 7 8 9 A B C D E F

[o[nuL [soH[sTx[ETX [EOT [ENQ [ACKTBEL| BS [HT [LF'[vT [FF [CR [so [sI
4| 1| pLe [pc1[pc2[pc3 [pca [NAK [sYN[ETB [cAN | EM [suB[ESc| Fs [Gs [Rs [us
a2 V[o | # | $ | % | &] | () |+]|+]|- 7
m{3le|1]2]3]a]s5][e|[7[8][o|:]:i]<[=[>]-¢2
=lalef[a]B|c|p]E[F]a|H][I]a][k][L][M[N]oO
IS5 PlQf[R[Ss|T]JUV]|W|[X|[Y[Z|[]T]\N]T]~]-
“l6l] - [alb|[c]d]e]f|]a][n|[i[i[k]1][m]|[n]o
°°__ 72felalr s t]ulviw][x|y [z {713~]pEL

16 columns: 4 bits

e Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset

®* Control characters were designed for transmission

(Demo)

Representing Strings: the Unicode Standard

Representing Strings: the Unicode Standard

EEAEC RN AR Ay
8071 8072 8073 8074 8075 8076 8077 8078

H \ 1 =A H
it | AR | FA AR B | B | B
8171 8172 8173 8174 8175 8176 8177 8178
AR | R o B
8211 8272 8273 8274 8275 8276 8217 8278
8311 8372 8373 8374 8375 8376 8377 8378

Representing Strings: the Unicode Standard

® 109,000 characters

B | US| HE) e | | R
B | 4H | BHH =i
8071 8072 8073 8074 8075 8076 8077 8078
et | AR AR | R | B |
8171 8172 8173 8174 8175 8176 8177 8178
AR R | S| BE |
8271 8272 8273 8274 8275 8276 8277 8278
BOH T R A ik | 22
VN 4L -7
8371 8372 8373 8374 8375 8376 8377 8378
e | s | e —HKi | e | e
= X, &"_ A= BH | =
o | 7 H == oD
http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters

® 93 scripts (organized)

B B IR a | k|
B | 4H | BHH =i
8071 8072 8073 8074 8075 8076 8077 8078
R AR R e |
8171 8172 8173 8174 8175 8176 8177 8178
B HE M | S| B |
8271 8272 8273 8274 8275 8276 8277 8278
BOH T R A ik | 22
VN 4L -7
8371 8372 8373 8374 8375 8376 8377 8378
BN R | 28 |
e | 7 H == o
http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

B B IR a | k|
= o | HHE | BH =
8071 8072 8073 8074 8075 8076 8077 8078
R AR R e |
8171 8172 8173 8174 8175 8176 8177 8178
HR o | b e Bt | B
S L5/ =i

8271 8272 8273 8274 8275 8276 8277 8278
= | - | - | | —+—- | K&
== 7 j_\.

2 B |5 R \|Z || E
8371 8372 8373 8374 8375 8376 8377 8378
BN R | 28 |
e | 7 A == S

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

8074 8075 8076

ik

8077

R BB T

8174 8175 8176

—

H

8177

8274 8275 8276

Ll
2

8217

4,
70N
8374 8375 8376

i

8377

—=- —Ki
% | %% | =

~ 2=

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

8074 8075 8076

ik

8077

R BB T

8174 8175 8176

—

H

8177

8274 8275 8276

Ll
2

8217

4,
70N
8374 8375 8376

i

8377

—- =
% | 5% |

~ 2=

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

B HE | wh

8074 8075 8076

ik

8077

R BB T

8174 8175 8176

—

H

8177

8274 8275 8276

Ll
2

8217

4,
70N
8374 8375 8376

o]

8377

k| 35 | 5

~ 2=

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

5| EBE | HE | Hi - | HEb | O
B | R B | B | A | R | O
8071 8072 8073 8074 8075 8076 8077 8078

H | gR 1|/ gt | H=e | HBE
it IR | A | RS E BB R G
8171 8172 8173 8174 8175 8176 8177 8178

A Hh

B0 | 6 | b | i | B W | ga
8271 8272 8273 8274 8275 8276 8277 8278
e I o el [S e e i = o —H- | e
2 o A | 2=
8371 8372 8373 8374 8375 8376 8377 8378
A A A A AN

http://ian-,

albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

R

=3

HE

8075

ik

8077

il

8078

w oIX
wWH |3

fEz

8175

—

=
FH

8177

8178

fith

8275

il

B2

8217

i

8372

—H-

:/]

70N
8375

o]

8377

5t

£33

~

-

B

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

R

=3

5|

8075

ik

8077

il

8078

w oIX
wWH |3

fEz

8175

—

=
FH

8177

8178

fith

8275

il

B2

8217

i

8372

—H-

:/]

70N
8375

o]

8377

5t

£33

~

-

B

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

R

=3

5|

8075

ik

8077

e
(it

8078

e

w oIX

fEz

8175

—

=
FH

8177

8178

fith

8275

il

B2

8217

g “E-
s —=

i

8372

—H-

:/]

70N
8375

o]

8377

gl

=3
@
=
=

5t

g
%

-

B

g

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

e A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

R

=3

8| HE | =

8075 8076

ik

8077

e
(it

8078

w oIX
wWH |3

fEe | JiEx

8175 8176

—

=
FH

8177

8178

it | St

8275 8276

il

B2

8217

g “E-
s —=

i

8372

73 | IA

4,
T n 7
8375 8376

o]

8377

gl

=3
@
=
=

5t

-

B

g

(Demo)

Mutation Operations

Some Objects Can Change

[Demo]

Some Objects Can Change

[Demo]

First example in the course of an object changing state

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

2)
same_person | —»

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

2)
same_person | —»

Unicode
character
name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

Unicode

character
GIRL name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
Unicode

same_person | —
character

GIRL name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» @

Unicode
character

WOMAN name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» ﬁi}ﬁ

Unicode
OLDER character

WOMAN name

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~
same_person | —» @EEB
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Some Objects Can Change
[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~ -
same_person | —» ‘fETT
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

Some Objects Can Change
[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica [~ -
same_person | —» ‘fETT
Unicode
OLDER character
WOMAN name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)
4

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)
4

>>> mystery(four)

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

4

>>> mystery(four)

>>> len(four)
2

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s):
>>> len(four) s.pop()
4 s.pop()

>>> mystery(four)

>>> len(four)
2

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:]1 = []
4 s.pop()

>>> mystery(four)

>>> len(four)
2

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:]1 = [l
4 s.pop()

>>> mystery(four)
>>> len(four)
2

>>> four = [1, 2, 3, 4]

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:]1 = []
4 s.pop()

>>> mystery(four)
>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:]1 = []
4 s.pop()

>>> mystery(four)
>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:]1 = []
4 s.pop()

>>> mystery(four)
>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!
>>> len(four)

Interactive Diagram

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

four = [1, 2, 3, 4]
len(four)

mystery(four)
len(four)

four = [1, 2, 3, 4]
len(four)

another_mystery() # No
len(four)

def mystery(s):

def another_mystery():

arguments'!

Interactive Diagram

s.pop()
s.pop()

four.pop()
four.pop()

or

def mystery(s):
s[2:1 = []

Tuples

(Demo)

Tuples are Immutable Sequences

Tuples are Immutable Sequences

Immutable values are protected from mutation

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> oo0ze()

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> o0oze()
>>> turtle

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)
>>> ooze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> oo0ze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()

>>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()
>>> turtle >>> turtle

(1, 2, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> o0oze() >>> o0o0ze()
>>> turtle >>> turtle

(1, 2, 3) ['Anything could be inside!']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]

>>> ooze() Next lecture: ooze can >>> ooze()

>>> turtle change turtlé's bindin >>> turtle

(1, 2, 3) g g ['Anything could be inside!"']

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X + X

Name change:

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects
>>> X = 2
>>> X + X
Name change:

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00z€ Can

1

>>> turtle = [1, 2, 3]

>>> 00ze()

>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X

4

>>> X

+

2
X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X = 3
>>> X + X

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

6

Name change:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gﬁii{é Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

6

Name change:

Object mutation:

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00z€ Can

l

>>> turtle = [1, 2, 3]

>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X

4

>>> X
>>> X

6

+

2
X

3

Object mutation:

>>> X + X

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle =

(1, 2, 3)

>>> o0oze()
>>> turtle
(1, 2, 3)

Next lecture:

change turtle's binding

00z€ Can

l

>>> turtle = [1, 2, 3]

>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

Name change:

>>> X
>>> X

4

>>> X
>>> X

6

+

2
X

3

Object mutation:

>>> x = [1, 2]
>>> X + X

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaii{é Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

6

Name change:

>>> x = [1, 2]
>>> X + X

Object mutation: [1, 2, 1, 2]

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaii{é Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X
4

>>> X 3
>>> X + X

6

Name change:

>>> x = [1, 2]
>>> X + X
[1, 2, 1, 2]

Object mutation: >>> x.append(3)

>>> X + X

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3)

zzz gaiiié Next lecture: ooze can
(1. 2. 3) (.change turtle's binding

>>> turtle = [1, 2, 3]
>>> o0o0ze()
>>> turtle

['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2
>>> X + X

Name change: 4
>>> X = 3
>>> X + X
6

>>> x = [1, 2]
>>> X + X
[1, 2, 1, 2]

Object mutation: >>> x.append(3)

>>> X + X
[1, 2, 3, 1, 2, 3]

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X >>> X + X
. 4 : : . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X >>> X + X
. 4 : : . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X >>> X + X
. 4 : : . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[0] = 4

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>>
>>> X + X >>>
Name change: 4 a Object mutation: 1,
>>> X = 3 >>>
>>> X + X >>>
6 [1,

[1, 2]

X X
+ 1
X

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3)
>>> s[Q] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
Zzz gﬁii{é Next lecture: ooze can } zzz gﬁii{;
(1, 2, 3) el ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
>>> X + X =>> X + X
. 4 . 3 . [1r 2; 1; 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X >>> X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0] [0] = 4
ERROR >>> g

([4, 21, 3)

Mutation

Sameness and Change

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces

A rational number is just its numerator and denominator

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

*This view is no longer valid in the presence of change

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator
This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> g = [10]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> [10]
>>> pb = g

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> g = [10]
>>> pb = g
>>> g ==

True

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> a = [10]
>>> b = a
>>> g ==
True

>>> a.append(20)

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> a = [10]

>>> pb = g
>>> g ==

True

>>> a.append(20)
>>> g ==

True

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> a = [10]

>>> pb = g

>>> g ==

True

>>> a.append(20)
>>> g ==

True

>>> a

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

>>> a = [10]

>>> pb = g

>>> g ==

True

>>> a.append(20)
>>> g ==

True

>>> a

[10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> a = [10]

>>> pb = g

>>> g ==

True

>>> a.append(20)
>>> g ==

True

>>> a

[10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> pb = g

>>> g ==

True

>>> a.append(20)

>>> g ==

True

>>> g

[10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

[10]
[10]

>>> g = [10] >>> g
>>> b = a >>> D
>>> g ==

True

>>> a.append(20)

>>> g ==

True

>>> g

[10, 20]

>>> Db

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]
>>> b = a >>> b = [10]
>>> g == >>> g ==
True True

>>> a.append(20)

>>> g ==

True

>>> g

[10, 20]

>>> Db

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> a == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g ==

True

>>> g

[10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> a == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g == >>> g

True [10]

>>> g

[10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> a = [10] >>> g = [10]

>>> b = a >>> b = [10]

>>> a == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g == >>> a

True [10]

>>> g >>> b

[10, 20] [10, 20]

>>> p

[10, 20]

Sameness and Change

-As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> a = [10] >>> g = [10]

>>> b = a >>> b = [10]

>>> a == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g == >>> a

True [10]

>>> g >>> b

[10, 20] [10, 20]

>>> P >>> g ==

[10, 20] False

|ldentity Operators

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp@> == <expl>

evaluates to True if both <exp®> and <expl> evaluate to equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

Mutable Default Arguments are Dangerous

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)
e £()

1

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):

. s.append(3)
return len(s)

e £()

1

>>> ()
2

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]):
s.append(3)
return len(s)

>>> ()

1

>>> ()

2

>>> ()
3

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
- s.append(3) f v///”—%>

return len(s) fist

0 1 2
| I I)) - 3 3 3
>>>-'f() fl: f [parent=Global]
1 S |
>>> () Return
2 value |
>>> ()
3 f2: f [parent=Global]
s
Return
valueb2

f3: f [parent=Global]
s L

Return
value

Interactive Diagram

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame func f(s) [parent=Global]
- s.append(3) f ¢///”—_>

return len(s) fist

0 1 2
;;;> £0) fl: f [parent=Global] 3|13|3
1 S |
>>> () Return
2 value | Each time the function
>>> () is called, s is bound
3 f2: f [parent=Global] to the same value!
S
Return
value»2

f3: f [parent=Global]
s L

Return
value

Interactive Diagram

