
Lecture 8: Containers &
Sequences

CS 61A - Summer 2024
Raymond Tan

Sequences

A sequence is an ordered collection of values.

Examples:

Strings
Sequence of
characters

"hello world"
"abcdefghijkl"

[1, 2, 3, 4, 5]
[True, "hi", 0]

Lists
Sequence of values of
any data type

Lists

Lists
● A list is an ordered sequence of elements
● Some operations we can perform on lists:

○ Access an element at a certain position
○ Get the number of elements in a list
○ Concatenate two lists together into one
○ Determine if an element exists inside the list
○ … and much more

● Lists can contain more than one datatype as elements
○ Including other lists!

Demo: Working with Lists

Box and Pointer Notation
● Environment diagrams allow us to visualize the contents of a list
● Each box contains either a primitive value, or points to a compound

value
○ Ex: pair = [1, 2]

Box and Pointer Notation
● Environment diagrams allow us to visualize the contents of a list
● Each box contains either a primitive value, or points to a compound

value
○ Ex: triple = [1, [2, 3, 4], 5]

Box and Pointer Notation
● Environment diagrams allow us to visualize the contents of a list
● Each box contains either a primitive value, or points to a compound

value
○ Ex: omg = [1, [2, [True, ‘hello’]], [3, lambda x : 2 * x]]

>>> omg[2][1](4)
8

List Slicing
● List slicing returns a specified “chunk” of a list
● Syntax:

i: Starting Index
(inclusive)

j: Ending Index
(exclusive)

k (optional):
Step size
(default set to 1)

Demo: List Slicing

For Statements

Example: count
● Problem: We want to come up with a function that takes two

arguments - s and value. The goal is to return the number of times
the integer value appears in the list s.

count: while loop

Is there a way we can
make this implementation
shorter?

count: for statement
The for statement
automatically:
● Binds the current

element in the list to a
variable

● Removes the need to
keep track of an index,
as the variable bound
to the current element
will automatically
rebind to the next
element

For Statements
● A for statement is a way of iterating over sequences
● General syntax:

● var is bound to the current value in the iterable
● iterable is the object we’re iterating over (ex: list, but we’ll talk

about many more iterables later)

Range Objects
● A range object returns a sequence of values created by calling the

range function
● Default values are set for a range depending on how many arguments

we pass in
○ If one argument is passed in, this represents the end value (exclusive),

starting from 0
○ If two arguments are passed in, this represents the start value (inclusive)

and end value (exclusive)
○ If three arguments are passed in, this represents the start value

(inclusive), the end value (exclusive), and the step size

Demo: Range Objects

For statements using range objects
● In many different problems we’ll encounter, we’ll need not only the

element of a list, but also the index in which that element is stored
○ Ex: Printing out the indices of a list that store a given value, x

● It’s common to iterate over a range object where the argument to
range is the length of the list
○ This allows you to iterate over a set of all indices belonging to that list
○ Syntax: for i in range(len(s))

List comprehensions
● List comprehensions allow us to initialize a list based on another

iterable in a single line
● Syntax:

List comprehensions

● expression - The expression we want to include in the final list
● element - The variable bound to where we currently are in the

sequence
● sequence - The iterable we are basing the list comprehension on
● conditional (optional) - Only include expression if this conditional is

true

Break

Example: Index evens
● Write a function that takes in a list s, and returns a list of all the

indices of the elements in the list for which the element is an even
number.

● Try doing it with a traditional for loop, and then with a list
comprehension!

index evens - Traditional For Loop

index evens - List Comprehension

Strings

Strings are an Abstraction

Representing Data:

‘False’, ‘Everyday’, ‘2500’

Representing Language:

‘Entschuldigung , wie bitte’ , ‘Nos vemos’ , ‘你好’

Representing Programs:

‘curry = lambda f: lambda x: lambda y: f(x,y)’

Three Forms of Strings
Single quotes strings and double quotes strings are equivalent

‘Hello there’ , “General Kenobi”

Multi-line strings automatically insert new lines

“””Shall I compare thee to a summer’s day?

Thou art more lovely and more temperate”””

The \n is an escape sequence signifying a line feed

“””Shall I compare thee to a summer’s day?\nThou art more lovely and more temperate”””

Multi-line strings are often used in docstrings as they usually span
multiple lines

Strings are Sequences
● A String can be thought of as a sequence of characters

○ We can get the number of elements in the sequence by using len
○ We can index into a String to get an individual character

■ Note: An element of a String is itself a String, just a single element
■ This is different from a list, where if we have a list of numbers, indexing

into that list would return a number
● However, the in and not in operators can match substrings, rather than

only individual elements in the sequence

Strings are Sequences
● Can use a for statement to iterate over the characters of a String

This would print out
the individual
characters of
‘cs61a’

Dictionaries

Dictionaries
● Dictionaries are an example of a key-value data structure

○ Each data entry consists of a (key, value) pair
● Incredibly efficient to retrieve data as it utilizes a concept known as

hashing (out of scope)

Dictionaries - Example

‘a’

‘b’

1

2

Dictionaries - Example

‘a’

‘b’

1

2

Dictionaries - Example

‘a’

‘b’

3

2

Dictionaries - Example

‘a’ 3

Summary
● A sequence is an ordered collection of values

○ Ex: Lists, Strings, ranges, dictionaries
● Box and Pointer Notation is how we represent lists in diagrams

○ Primitive values are stored in the boxes directly, while compound values
are represented with an arrow pointer

● For statements are a more direct way of iteration over an iterable
● List comprehensions allow us to create lists in a single line based on

another iterable
● Dictionaries are an efficient, key-value store datatype

