
Lecture 7: Tree Recursion

CS 61A - Summer 2024
Raymond Tan



Order of Recursive Calls



General Structure of Recursive Functions
● Base case(s): The simplest instance of the problem that can be 

solved without much work
● Recursive call: Making a call to the same function with a smaller 

input, getting you closer to the base case(s)
● Recombination: Using the result of the recursive call to solve the 

original problem



Cascade
● We want a function that can “cascade” a number

○ Given a number such as 123, the output would be:



Demo: Cascade



Two definitions of cascade

● If two implementations are equally clear, then shorter is usually better 
● In this case, the longer implementation is more clear
● When learning to write recursive functions, put the base cases first 
● Both are recursive functions, even though only the first has typical structure



Inverse cascade

Want inverse_cascade(1234) 
to return:

1
12
123
1234
123
12
1

Try it out!



Inverse cascade

Want inverse_cascade(1234) 
to return:

1
12
123
1234
123
12
1

Try it out!



Tree Recursion



What is Tree Recursion?
● A function is defined as tree recursive if:

○ It uses recursion (the function calls itself)
○ At the recursive step, more than one recursive call is made 

● That’s it!
● We call it tree recursion because the recursive calls form a tree-like 

structure when drawn out



Example: fib Revisited
● The fibonacci numbers are by definition, recursive

○ A fibonacci number is defined as the sum of the previous two fibonacci 
numbers 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…



Recursive fib in Python
● Base case: What’s the simplest 

input I can give to fib?
○ If n == 0, return 0
○ If n == 1, return 1 

● Recursive case: What recursive 
calls should I make?
○ fib(n - 1), fib(n - 2) 

● Recombination: How do I use the 
subproblems to solve my current 
problem?
○ fib(n) = fib(n - 1) + fib(n - 2)



Recursive fib in Python
● Was it necessary to have 

multiple base cases here? 
○ Yes, since we’re subtracting our 

input by two in one of the 
recursive calls

● Can reduce this to one if 
statement: 



Tree Recursive Structure
The computational process of fib evolves into a “tree” structure



Repetition in Tree Recursive Computation
This process is highly repetitive; fib is called on the same argument multiple times

We’ll see how we can speed this up in the Efficiency lecture!



Memoization
● The basic idea of memoization is that each time we execute a 

recursive computation, we record the result of that computation
● That way, if we ever see exactly the same parameters a second time, 

we can access the result directly, rather than having to excuse a new 
series of recursive calls

● We’ll have an entire lecture focused on Efficiency in about 2 weeks



Demo: Memoization



Break



Example: Count partitions



Recognizing Tree Recursive Problems
● In the Fibonacci problem, the recursive structure was presented to us 

in the problem statement—we won't always be so lucky
● The hardest parts of tree recursion problems often are:

○ Figuring out that we need to use tree recursion
○ Figuring out how to represent our problem recursively



Count partitions
We're going to write a function, count_partitions, that takes in two parameters: n and k

count_partitions will return the number of different ways that you can "partition" n into a 
sum of smaller numbers, where the largest partition you're allowed to use is one of size k

For example, if n = 5 and k = 3, the valid partitions are:

5 = 3 + 2
5 = 3 + 1 + 1
5 = 2 + 2 + 1
5 = 2 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1

So, count_partitions(5,3) should return 5



Solution



Base cases
if n == 0: return 1

I call this the "success case." If we take enough partitions out of n 
such that we have exactly zero left, we've found a valid partitioning 
of n.

elif k == 0 or n < 0: return 0

I call this the "failure case." There are two ways we can fail:

● We make k too small, such that there are no more valid 
partitions

● We make n too small, presumably by taking out a partition 
that's larger than n itself



Recursive cases
count_partitions(n - k, k)

If we want to count all the ways to do something, we'll just try every possible 
option and see what works out for us.

So, one way to try new options is to see what happens if we take out the largest 
possible partition. Then, we take the recursive leap of faith and let Python do the 
rest of the work.

count_partitions(n, k - 1)

Alternatively, we could decide that we no longer want to attempt to use that 
largest partition, and see what happens if we further constrain our problem by 
reducing the partition size. Also takes the recursive leap of faith.



Call diagram

c_p(5, 3)

c_p(2, 3) c_p(5, 2)

c_p(-1, 3) c_p(2, 2) c_p(3, 2) c_p(5, 1)

c_p(0, 2) c_p(2, 1)

c_p(1, 1) c_p(2, 0)

c_p(0, 1) c_p(1, 0)
1 0

1 0

11

20

2 3

5

12

*count_partitions is abbreviated as c_p



Observations about tree recursion
● Tree recursion is especially good for solving problems where we're 

presented with a decision at each step of the problem
○ We can model each option we're presented with as a recursive 

call—this allows us to ultimately try all possible options
● It depends on the problem, but sometimes working out your recursive 

calls is important in helping you figure out your base case
○ One of the trickiest parts can be figuring out how to model 

"moving forward" in a complex word problem in terms of 
parameters



Summary
● Execution doesn’t return to a frame until the recursive call returns

○ This is no different than non-recursive function calls in the body of 
another function

● Tree recursion is when we make multiple recursive calls in the body of 
a function
○ Examples: fib, count_partitions

● Memoization can make recursive solutions more efficient
● Tree recursion is especially good for solving problems where we're 

presented with a decision at each step of the problem


