
Lecture 6: Recursion

CS 61A - Summer 2024
Raymond Tan



Review: Environment Diagrams



Example: Function Composition
Python Tutor Link



Abstraction



Review: How do we talk about functions?

A function's domain is the set of all possible 
inputs it can take

square can take in any single number for x

A function's range is the set of all possible 
outputs it can give

square returns a non-negative (real) number

A function's behavior is the relationship between 
inputs and outputs

square returns the square of x



Functional Abstraction



Recursive Functions



Standing in line analogy
● It’s lunchtime, and you’re hungry for some noodles, so you go to your favorite 

restaurant in Berkeley, Noodle Dynasty. As always, there is a line out the door, 
so you stand at the back of the line to enter yourself into the queue. Since 
you’re really hungry, you start to wonder how long it will take for you to get 
inside and order food. You would like to know how many people are in front of 
you in line so that you have an idea of the wait time. 



Iterative Solution
● Problem: Count the number of people in front of you in line.
● Solution:

○ Ask a friend to go to the front of the line
○ Count each person in line, one-by-one
○ Then, ask your friend to come back and tell you the answer



Recursive Solution
● Problem: Count the number of people in front of you in line.
● Solution:

○ You realize that the person at the front of the line clearly knows they're 
first

○ For every other person not at the front of the line:
■ Ask the person in front of them: “What’s your position number in 

line?”
■ This process repeats until we get to the front of the line
■ Once the person in front of you gets back to you, add 1 to that 

answer and tell the person behind you



General Structure of Recursive Functions
● Base case(s): The simplest instance of the problem that can be 

solved without much work
○ If you’re at the front of the line, you know how many people are in front of 

you (0)
● Recursive call: Making a call to the same function with a smaller 

input, getting you closer to the base case(s)
○ Ask the person in front of you, “What’s your position in line?”

● Recombination: Using the result of the recursive call to solve the 
original problem
○ When the person in front of you tells you their answer, add one to it to get 

the answer to your original question



Recursive Functions
● Definition: A function is called recursive if the body of that function 

calls itself, either directly or indirectly
● Recursion is useful for solving problems with a naturally repeating 

structure - problems that are defined in terms of themselves.
● Recursive solutions require you to break an input into subproblems 

with “smaller” inputs



Example: Factorial
● A factorial of a number n is defined as:

■
■ A
■ A
■ A

○ 5! = 5 * 4 * 3 * 2 * 1 
● Let’s write a Python function that will calculate n!



Factorial - Iterative



Factorial - Recursive



Recursion in Environment Diagrams

● The same function, fact_recursive, 
is called multiple times

● Different frames keep track of the 
different arguments in each call

● What n evaluates to depends upon the 
current environment

● Each call to fact_recursive solves 
a simpler problem than the last: a 
smaller n



Verifying Recursive Functions



Recursive Leap of Faith
Is fact_recursive implemented 
correctly?

1. Verify the base case
2. Treat fact_recursive as a 

functional abstraction
3. Assume fact_recursive(n-1) is 

correct
4. Verify that fact_recursive(n) is 

correct

Don’t trace the function call all the way to 
the base case



Arms-Length Recursion
● Arms-length recursion occurs when we "reach" into the next level of 

recursion doing work that should be done by the next recursive call(s)
● Violates The Recursive Leap of Faith
● Is redundant, complicates code, and makes a recursive function more 

difficult to verify



Arms-Length Recursion: fact_recursive

● This implementation of 
fact_recursive is correct

● However, it is redundant
○ We have explicit cases 

that the combination 
of the recursive case 
and base case would 
already handle

● Simplify repeated code 
with recursive calls



Break



More Examples



Digit Sums

● We want a function that sums all the individual digits of a number
● If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
● Useful for typo detection!



The Problem Within the Problem
● The sum of the digits of 6 is 6. 
● Likewise for any one-digit (non-negative) number (i.e., < 10). 
● The sum of the digits of 2022 is

That is, we can break the problem of summing the digits of 2022 into a 
smaller instance of the same problem, plus some extra stuff. 



Converting Iteration to Recursion
● More formulaic: Iteration is a special case of recursion
● Idea: The state of an iteration can be passed as arguments



Example: largest_drop
Return the largest drop of N where the digits of N are read both 
left-to-right and right-to-left. That is, return the largest drop in value going 
from a digit in N to an adjacent digit in N



Summary
● Recursive functions are functions that call themselves
● Creating recursive solutions consist of 3 steps:

○ Base case
○ Recursive case
○ Recombination

● Treat recursive function calls as abstractions
○ Take the recursive leap of faith
○ Avoid arms-length recursion 

● Iteration is a special form of recursion


