

高等工程热力学

4.实际气体状

为什么研究状态方程?

f(p, v, T) = 0

热力学微分关系式,建立了各热 力学参数与状态方程的关系,只要已 知某物质的状态方程,其它参数均可 求出。

问题归结于如何建立物质的状态方程。

可近似看成理想气体: high T, low P

实际气体对理想气体性质的偏离

理想气体两个假定: Z = 1

(1)分子不占有体积 *pv* = *RT* (2)分子之间没有作用力

实际气体 $pv \neq RT$ $Z \neq 1$

为反映实际气体与理想气体的偏离程度 定义压缩因子<u>Compressibility factor</u>

 $Z = \frac{pv}{RT}$

压缩因子的物理意义

Z > 1 $v > v_0$ 表明实际气体难于压缩Z < 1 $v < v_0$ 表明实际气体易于压缩

Z(压缩因子)反映<u>实际气体压缩性</u>的大小,

压缩性大小的原因

分子占有容积 自由空间减少, 不利于压缩 Ζ (2) 分子间有吸引 力,易于压缩 关键看何为主要因素 取决于气体种类和状态

1901年,卡.昂尼斯(K. Onnes)提出

拉丁文"力"

- Z = f(T, p) $\overrightarrow{T} = f(T, p)$
- 或 Z = f(T, v)
- 或 $Z = f(T, \rho)$

形式的状态方程

主要思想考虑分子间作用力

维里方程的形式

一切气体
$$p \to 0$$
 $Z = 1$ 第三维里系数
 $Z = \frac{pv}{RT} = 1 + B'p + C'p^2 + D'p^3 + \cdots$
 $Z = \frac{pv}{RT} = 1 + B\rho + C\rho^2 + D\rho^3 + \cdots$
 $H = \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \cdots$
第二维里系数

B,B',C,C',D,D'.....与温度有关的量

维里系数间的关系

$$Z = \frac{pv}{RT} = 1 + \frac{B}{v} + \frac{C}{v^{2}} + \frac{D}{v^{3}} + \dots$$

$$B = B'RT$$
$$C = B'BRT + C'R^{2}T^{2}$$

$${}^{'}Z = 1 + \frac{B'RT}{v} + \frac{B'BRT + C'R^{2}T^{2}}{v^{2}}$$

+
$$\frac{B'CRT + 2BC'R^{2}T^{2} + D'R^{3}T^{3}}{v^{3}} + \cdots + v^{3}$$

维里系数的物理意义

一般情况 $\stackrel{\text{\tiny }}{\exists} \quad \rho < \frac{1}{2}\rho_c \quad \begin{cases} Z = 1 + B'p \\ Z = 1 + \frac{B'}{2} \end{cases}$ $\stackrel{\text{\tiny }}{=} \frac{1}{2}\rho_{c} < \rho < \rho_{c} \qquad \begin{cases} Z = 1 + B' p + C' p^{2} \\ Z = 1 + \frac{B}{v} + \frac{C}{v^{2}} \end{cases}$ 维里方程的优点: (1)物理意义明确, (2)实验曲线拟合容易。

第二维里系数在低温区具有很大的负值,但在高温区为很小的正值,若无限高温时流体接近理想气体性质从而 B(T)趋近于零;

第三维里系数在临界点附近具有一个正的峰值,随着温度降低,C(T)迅速减小,在低温区 变为负值,而随着温度升高,C(T)一直为正并平缓趋近于零。

几百种状态方程

范围广,精度差 范围窄,精度高

提出最早,影响最大:范德瓦尔斯方程 Van der Waals equation

1873年提出,从理想气体假设的修正出发

- 范德瓦尔斯方程
- RK方程 (1949年瑞里奇-邝)
- RKS方程
- RKS的其他形式
- PR方程

范德瓦尔斯状态方程

理想气体

RT

(1) 分子本身有体积,自由 空间减小,同温下增加碰撞 壁面的机会,压力上升

$$p = \frac{RT}{v - b}$$

(2)分子间有<mark>吸引力</mark>,减 少对壁面的压力

吸引力 $\propto \rho^2$

 $p = \frac{RT}{v-b} - \frac{a}{v^2}$

范德瓦尔斯方程

极性分子/非极性分子:电荷分布的均匀性、 对称性

正负电荷中心不重合

正负电荷中心重合

分子<mark>极性大小</mark>:两个带 电荷-δ和+δ的电荷相 距*l*时,**偶极矩**μ

$$u = q \times l$$

范德瓦尔斯引力

Dipole Moments of Molecules (in Debye Units:1 D = $3.336*10^{-30}$ C·m)

Molecules						
Alkanes	0 ^{<i>b</i>}	H ₂ O	1.85 ^c			
C ₆ H ₆ (benzene)	0^d	C _n H _{2n+1} OH (alcohols)	1.7			
CCl ₄	0	C ₆ H ₁₁ OH (cyclohexanol)	1.7			
CO ₂	0 ^e	OMCTS ^f	0.42			
СО	0.11	CH ₃ COOH (acetic acid)	1.7			
CHCl ₃ (chloroform)	1.06	C ₂ H ₄ O (ethylene oxide)	1.9			
HCI	1.08	CH_3COCH_3 (acetone)	2.9			
HF	1.91 ^c	HCONH ₂ (formamide)	3.7 ^c			
NH ₃	1.47	C ₆ H ₅ OH (phenol)	1.5			
CH₃Cl	1.87	$C_6H_5NH_2$ (aniline)	1.5			
NaCl	8.5	C ₆ H ₅ Cl (chlorobenzene)	1.8			
CsCl	10.4	C ₆ H ₅ NO ₂ (nitrobenzene)	4.2			

Reference: Intermolecular and Surface Forces (Third Edition), Jacob N. Israelachvili

(1)取向力(Keesom力, dipole-dipole force)
(2)诱导力(Debye力, dipole-induced dipole force)
(3) 色散力(London力, dispersion force)

(1) 取向力 (Keesom力)

偶极-偶极相互作用(dipole-dipole force)

相互排斥

无相互作用

强相互吸引

(1) 取向力 (Keesom力)

- 当两个偶极矩方向相同时,相互作用势能为负,并达到最小值;
- 当两个偶极矩方向相反时,势能为正,并达到最大值。
- 如果 μ_1 , μ_2 在各种相对方向出现的几率相同,则相互作用平均 势能 $E_k = 0$ 。
- 按波尔茨曼分布定律,温度越低, μ_1 和 μ_2 在低势能的相对方 向出现的可能性越大,因此对各种方向加和后,平均静电势 能 $E_k \neq 0$,而是:

$$E_{k} = -\frac{2}{3} \frac{\mu_{1}^{2} \mu_{2}^{2}}{kTr^{6}}$$

式中,r为中心距, k为波尔茨曼常数, ε_0 为真空介电常数。

分子的电荷分布受到其他分子电场的影响,产生诱导极 矩,诱导偶极矩μ的平均值与分子所在位置的有效电场 *F* 成正比。

 $\mu = \alpha F \tag{7-2}$

式中 α 为极化率,其值与温度无关。

- 永久偶极矩与被其诱导的偶极矩之间的相互作用,称为诱导 作用。
- 诱导作用可发生在非极性分子和极性分子之间,也发生在极 性分子之间。

不同分子间的诱导相互作用势能 E_D 为:

$$E_D = -\frac{(\alpha_1 \mu_2^2 + \alpha_2 \mu_1^2)}{r^6}$$

(3) 色散力 (London力)

■ 惰性气体分子间依然存在作用力;

■ 极性分子考虑静电力和诱导力后,实验值仍然大

直观理解:对非极性分子(He、CO₂),时均偶极矩 为零,但在任意一个瞬间,电子与原子核内质子不重 合,即正负电荷中心不重合,原子内产生了一个瞬时 偶极矩,该偶极矩的电场极化了周围的中性分子,使 它内部产生一个诱导偶极矩,由此产生的偶极间相互 作用称为色散作用

$$E_L = -\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \frac{\alpha_1 \alpha_2}{r^6}$$

(3) 色散力 (London力)

范德瓦尔斯引力

 对于具有偶极矩和极化率的同类分子,三种相互作用势 能之和为

 $E = E\kappa + ED + EL$

范得瓦尔斯引力的特征:

- 存在于分子和原子间的一种作用力;
- 它是引力,作用势能的数量级0.41868~4.1868 J/mol
- 范得瓦尔斯引力的作用范围是3~5×10⁻¹⁰ m
- 主要作用力是色散力,但对极性极强的分子,取向力 占主导。

Induction, Orientation, and Dispersion Free Energy Contributions to the Total Van der Waals Energy in a Vacuum for Various Pairs of Molecules at 293K

Similar Molecules				Van der Waals Energy Coefficients C (10 ⁻⁷⁹ J m ⁶) <i>Total VDW Energy</i> C _{VDW}					
Interacting Molecules	Electronic Polarizability $\frac{\alpha_0}{4\pi\epsilon_0}$ (10 ⁻³⁰ m ³)	Permanen Dipole Moment u (D) ª	t Ionization Potential I = hv ₁ (eV) ^b	$\frac{\frac{C_{ind}}{2u^2\alpha_0}}{\left(4\pi\varepsilon_0\right)^2}$	$\frac{C_{\text{orient}}}{u^4}}{3kT(4\pi\varepsilon_0)^2}$	$\frac{C_{\rm disp}}{\frac{3\alpha_0^2 h\nu_{\rm l}}{4(4\pi\varepsilon_0)^2}}$	Theoretical Eq. (6.17)	From Gas Law Eq. (6.14)	Dispersion Energy Contribution to Total (Theoretical) (%)
Ne-Ne	0.39	0	21.6	0	0	4	4	4	100
CH ₄ —CH ₄	2.60	0	12.6	0	0	102	102	101	100
HCI-HCI	2.63	1.08	12.7	6	11	106	123	157	86
HBr—HBr	3.61	0.78	11.6	4	3	182	189	207	96
HI—HI	5.44	0.38	10.4	2	0.2	370	372	350	99
CH₃CI–CH₃CI	4.56	1.87	11.3	32	101	282	415	509	68
NH ₃ —NH ₃	2.26	1.47	10.2	10	38	63	111	162	57
$H_2O - H_2O$	1.48	1.85	12.6	10	96	33	139	175	24
		-		$\frac{u_1^2 \alpha_{02} + u_2^2 \alpha_{01}}{(\alpha_{02} + u_2^2)^2}$	$\frac{u_1^2 u_2^2}{2 LT (4)^2}$	$\frac{3\alpha_{01}\alpha_{02}h\nu_{1}\nu_{2}}{2(1-2)^{2}}$	<u>_</u>		-
Dissimilar Mol	ecules			$(4\pi\varepsilon_0)^-$	$3KI(4\pi\varepsilon_0)^-$	$2(4\pi\varepsilon_0)^{-}(\nu_1+\nu_2$)		
Ne-CH ₄				0	0	19	19 ^c	—	100
HCI—HI				7	1	197	205	—	96
H ₂ O–Ne				1	0	11	12	_	92

 H_2O-CH_4

 $X - H \cdot \cdot \cdot Y$

氢原子可以同时和两个电负性很大而 原子半径较小的原子相结合。对 H-X的 分子,与Y的氢键强弱,与X 及Y 的电 负性有关,电负性大,氢键越强,还与 Y 的半径有关。半径越小越能接近,

氢键越强。

水的四面体结构

分子距离很小时产生相斥作用,当电子云 相互渗透时,电子总电荷有相斥作用,核荷间 也有相斥作用。

二、实际气体的区分

实际气体的种类:

- 极性气体:极性分子组成的气体,如:水蒸气、氨、
 部分氟里昂气体等,静电力较大。
- 非极性气体:非极性分子组成的气体,如:重的惰 性气体等,主要是色散力。
 - 量子气体:分子量很小的轻气体,如:氢、轻的惰 性气体等,由于气体分子占据的能级数很少,能量 变化是离散型而不是连续型。

流体极性判别式(匹察(Pitzer)提出)

$$\mu_r = \frac{\mu^4 p_c^2}{T_c^4}$$
 (7-3)

μ为偶极矩;*Ρ*。, *Τ*。分别 为临界压力和临界温度

非极性流体: $\mu_r = 0$

微极性流体: $\mu_r \le 0.5 \times 10^{-6}$

强极性流体: $\mu_r > 0.5 \times 10^{-6}$

标准流体: 非极性流体和微极性流体

非极性流体: $CH_4, C_2H_6, C_3H_8, C_4H_8$

微极性流体: $NO, NO_2, CO, N_2, R_{11}, R_{12}, R_{13}, R_{114}$

强极性流体: $H_2O, NH_3, C_2H_5OH, SO_2, R_{142}$

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$
 范德瓦尔斯方程

$$v^{3} - \left(b + \frac{RT}{p}\right)v^{2} + \frac{a}{p}v - \frac{ab}{p} = 0$$

{ 一个实根,两个虚根 三个不等实根

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$
 范德瓦尔斯方程

1、高温时
$$T > T_C$$
 $\frac{a}{v^2}$ 项可忽略

$$p(v-b) = RT$$
 pv图上 **T** 是双曲线

一个实根,两个虚根

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$

2、低温时 低温低压 $\frac{a}{v^2}$ ↓ **T** 是双曲线 低温高压 $\frac{a}{v^2}$ ↓ **T** 很陡

AM:亚稳定状态 过冷蒸气 *T < T_s(p)*

BN:亚稳定状态 过热液体 *T > T_s(p)*

NM:不存在

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$

范德瓦尔斯方程

3、临界点C

三个相等实根

范.德瓦尔斯方程; 定量计算不准确

$$\begin{cases} p_{c} = \frac{RT_{c}}{v_{c} - b} - \frac{a}{v_{c}^{2}}$$
多数物质 $Z_{c} = 0.23$

$$0.29 \\ p_{c} = \frac{a}{27b^{2}} T_{c} = \frac{8a}{27Rb} v_{c} = 3b \\ a = \frac{27}{64} \frac{(RT_{c})^{2}}{p_{c}} b = \frac{RT_{c}}{8p_{c}}$$
不准确

$$shifts = \frac{RT_{c}}{8p_{c}}$$
Area be a shift a shi

一些气体的临界参数与范德瓦尔斯常数

物质	T₀, K	p,,×10° Pa	V _{m,c} , m ^s /kmol	$Z_{o} = \frac{p_{o}V_{mo}}{R_{M}T_{o}}$	范德瓦尔常数		
					$a, 10^{5} \operatorname{Pa} \cdot \left(\frac{\mathrm{m}^{3}}{\mathrm{kmol}}\right)^{2}$	b, m³/kmol	
空气	133	37.7	0.0829	0.284	1.358	0.0364	
一氧化碳	133	35.0	0.0928	0.294	1.463	0.0394	
正丁烷	425.2	38.0	0.257	0.274	13.80	0.1196	
氟里昂 12	385	40.1	0.214	0.270	10.78	0.0998	
甲烷	190.7	46.4	0.0991	0.290	2.285	0.0427	
氮	126.2	33.9	0.0897	0.291	1.361	0.0385	
乙烷	305.4	48.8	0.221	0.273	5.575	0.0650	
丙烷	370	42.7	0.195	0.276	9.315	0.0900	
二氧化硫	431	78.7	0.124	0.268	6.837	0.0568	

测量值: 70.91E+05 Pa

已知: 体积为0.03m²容器中装有3.7kg、215K的C0 试用(1)理想气体状态方程; (2)范德瓦尔斯状态方程计算气 体压力

比容 v=0.03/3.7=0.00811m³/kg; CO摩尔质量 28kg/kmo1, 摩尔体积 0.227 m³/kmo1。摩尔气体常数R = 8.314 J/(kmo1•K)

(1) 理想气体状态方程

例

 $p = \frac{RT}{V_m} = \frac{8.314 \text{J/(kmol} \cdot \text{K}) \times 215 \text{K}}{0.227 \text{m}^3/\text{kmol}} = 78.7\text{E} + 05\text{Pa}$

$$p = \frac{R_m T}{V_m - b} - \frac{a}{V_m^2}$$
 $P = 66.9E+05$ Pa

其它经验性状态方程

$$p = \frac{RT}{v-b} - \frac{a}{T^{0.5}v(v+b)} \qquad \begin{array}{l} \mathbf{R} - \mathbf{K} 方程\\ Z_{C} = 0.333 \end{array}$$
$$p = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)+b(v-b)} \qquad \begin{array}{l} \mathbf{P} - \mathbf{R} 方程 \end{array}$$

$$p = \sum_{i=1}^{5} \left[A_i + B_i + C_i e^{(K,T/T_c)} \right] (v-b)^{-i}$$

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$

马丁-侯方程 河最大 浙大侯虞君

普遍化状态方程和对比态方程

上述经验性状态方程,不同物质的a和b不同,没有通用性。 $a = \frac{27 (RT_c)^2}{64 p_c} \quad b = \frac{RT_c}{8p_c}$

a和b的拟合需要足够的实验数据。

能不能找到一个普遍化的通用的状态方程, 虽不太准,但能估算。

相似原理

角相似,形状相似

普遍化范德瓦尔斯状态方程

发现各物质物性曲线相似

临界点**C**,均有
$$\left(\frac{\partial p}{\partial v}\right)_{T_C} = 0 \left(\frac{\partial^2 p}{\partial v^2}\right)_{T_C} = 0$$

用 p_r, v_r, T_r 建立方程,有可能得 到普遍化方程

对比态原理

Principle of Corresponding States

不同物质,p,T相同,v不同 可以满足同一个 $f(p_r, v_r, T_r) = 0$ 若两个对比参数相等,另一个必相等 ── 对比态原理 对比态方程

满足同一个对比态方程,称为热力 学相似的物质。

对比态原理

$$f(p_r, v_r, T_r) = 0$$

$$v_r = f(p_r, T_r)$$

$$Z = \frac{pv}{RT} = \frac{p_c V_c}{RT_c} \frac{p_r v_r}{T_r} = Z_c \frac{p_r v_r}{T_r}$$

$$\frac{Z}{Z_c} = f_1(p_r, T_r)$$

$$Z = f_2(p_r, T_r, Z_c)$$
与一形式的对比态方程
大多数物质 $Z_c = 0.23 \Box 0.29$

取 Z_c 为某常数 $Z = f_3(p_r, T_r)$

已知某未知物质的 $T_{\rm C}, p_{\rm C}, R$

已知 $p,T \Rightarrow p_r, T_r \Rightarrow Z \Rightarrow v$ $v,T \Rightarrow$ 设 $p_1 \Rightarrow p_{r1}, T_r \Rightarrow Z \Rightarrow p_{1'}$ 已知 再设 $p_2 \Rightarrow p_{r_2}, T_r \Rightarrow Z \Rightarrow p_{2'}$

 $v, p \Rightarrow$ 设 $T_1 \Rightarrow p_r, T_{r_1} \Rightarrow Z \Rightarrow T_{1'}$ 已知 再设 $T_2 \Rightarrow p_r, T_r_2 \Rightarrow Z \Rightarrow T_2$

以上方程都不适用于 量子气体及强极性气体

- BWR方程
- L-K方程
- 马丁—候方程

一、BWR方程

$$P = \frac{RT}{v} + (B_0 RT - A_0 - \frac{C_0}{T^2})\frac{1}{v^2} + (bRT - a)\frac{1}{v^3} + \frac{a\alpha}{v^6} + \frac{c(1 + \gamma/v^2)}{T^2}\frac{1}{v^3}\ell^{-\gamma/v^2}$$

适用范围: 烃类气体, 非极性和轻微极性气体。 且 $\rho < 1.8 \rho_c$, 液相区及气液相平衡。

式中: K=5.475, 共 A₂, A₃, A₄, A₅.B₂, B₃, B₅.C₂, C₃, C₅, b 11个常数。 适用范围: H₂O, NH₃, 烃类, 氟里昂气体。

总结

- L-K方程和BWR方程用于非极性和轻微极性气体容 积计算,对于烃类,误差在以内,对于非烃气体, 误差在2~3%以内。
- L-K方程和BWR方程用于在临界区附近及强极性流体、氢键流体气体容积计算,偏差增大。
- L-K方程和BWR方程还可用于液相性质及汽液相平 衡性质。
- RKS, PR方程也可用于汽相、液相及相平衡,
- 对极性气体,可用马丁——侯方程。