

高等工程热力学

4.实际气体状

态方程

为什么研究状态方程?

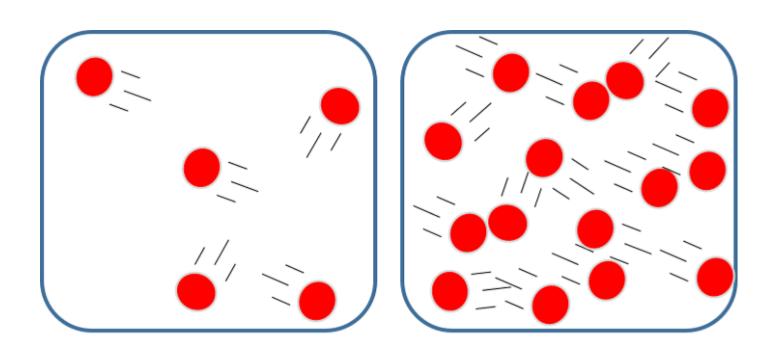
$$f(p,v,T)=0$$

热力学微分关系式,建立了各热力学参数与状态方程的关系,只要已知某物质的状态方程,其它参数均可求出。

问题归结于如何建立物质的状态方程。

Ideal gas

Non-ideal gas



可近似看成理想气体: high T, low P

实际气体对理想气体性质的偏离

理想气体两个假定: Z=1

$$Z = 1$$

(1) 分子不占有体积

$$pv = RT$$

(2) 分子之间没有作用力

实际气体 $pv \neq RT$

$$pv \neq RT$$

$$Z \neq 1$$

为反映实际气体与理想气体的偏离程度 定义压缩因子Compressibility factor

$$Z = \frac{pv}{RT}$$

压缩因子的物理意义

$$Z = \frac{pv}{RT} = \frac{v}{RT} = \frac{v(T, p)}{v_0(T, p)}$$
相同 T, p 下 理想气体 比容

$$Z > 1$$
 $v > v_0$ 表明实际气体难于压缩

$$Z < 1$$
 $v < v_0$ 表明实际气体易于压缩

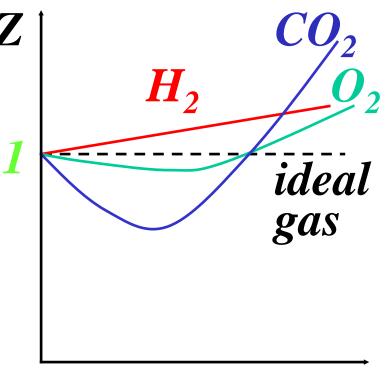
Z(压缩因子)反映<u>实际气体压缩性</u>的大小,

压缩性大小的原因

- (1) 分子占有容积 ,自由空间减少, 不利于压缩
- (2) 分子间有吸引力, 易于压缩

关键看何为主要因素

取决于气体种类和状态



维里 (Virial) 方程

1901年,卡.昂尼斯(K. Onnes)提出

$$Z = f(T, p)$$

或
$$Z = f(T, v)$$

或
$$Z = f(T, \rho)$$

形式的状态方程

主要思想考虑分子间作用力

拉丁文"力"

维里方程的形式

一切气体
$$p \rightarrow 0$$
 $Z = 1$

第三维里系数

$$Z = \frac{pv}{RT} = 1 + B'p + C'p^2 + D'p^3 + \cdots$$

$$Z = \frac{pv}{RT} = 1 + B\rho + C\rho^2 + D\rho^3 + \cdots$$

第二维里系数
$$1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + \cdots$$

B,B',C,C',D,D'.....与温度有关的量

维里系数间的关系

$$Z = \frac{pv}{RT} = 1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + \cdots$$

$$B = B'RT$$

$$C = B'BRT + C'R^2T^2$$

$$Z = 1 + \frac{B'RT}{v} + \frac{B'BRT + C'R^2T^2}{v^2} + \frac{B'CRT + 2BC'R^2T^2 + D'R^3T^3}{v^3} + \cdots$$

维里系数的物理意义

$$Z = 1 + \frac{B}{v} + \frac{C}{v_{2}^{2}} + \frac{D}{v_{3}^{3}} + \cdots$$

理论上维里方程适合于任何工质,级数越多,精度越高,系数由实验数据拟合。

作用递减

需要多少精度,就从某处截断。

三个分子间作相力 四个分子间作用力

在这样工型维星了方程

一般情况

$$\rho < \frac{1}{2} \rho_c$$

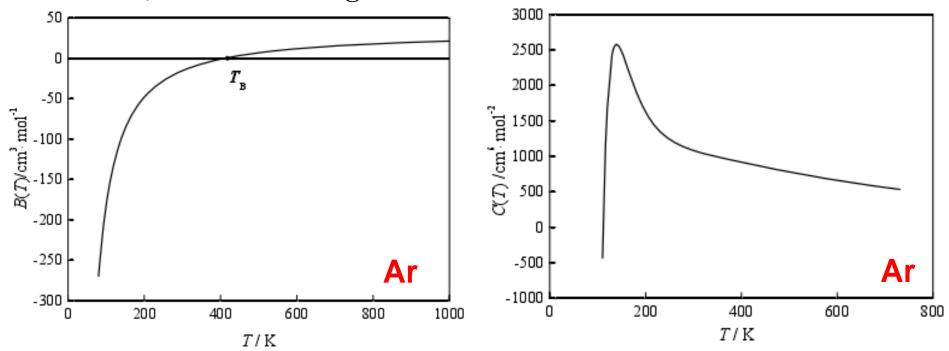
当
$$\rho < \frac{1}{2}\rho_c$$

$$\begin{cases} Z = 1 + B'p \\ Z = 1 + \frac{B}{v} \end{cases}$$

当
$$\frac{1}{2}\rho_c < \rho <$$

维里方程的优点: (1)物理意义明确, (2)实验曲线拟合容易。

临界温度: -122.4℃ (150.7 K); 临界压力: 4864 kPa 临界密度: 530.7 kg/m³



第二维里系数在低温区具有很大的负值,但在高温区为很小的正值,若无限高温时流体接近理想气体性质从而 B(T)趋近于零;

第三维里系数在临界点附近具有一个正的峰值,随着温度降低,C(T) 迅速减小,在低温区变为负值,而随着温度升高,C(T) 一直为正并平缓趋近于零。

经验性状态方程

几百种状态方程

范围广,精度差 范围窄,精度高

提出最早,影响最大: 范德瓦尔斯方程 Van der Waals equation

1873年提出,从理想气体假设的修正出发

二常数半经验方程

- 范德瓦尔斯方程
- RK方程 (1949年瑞里奇-邝)
- RKS方程
- RKS的其他形式
- PR方程

范德瓦尔斯状态方程

理想气体

$$p = \frac{RT}{v}$$

(1)分子本身有体积,自由空间减小,同温下增加碰撞 壁面的机会,压力上升

$$p = \frac{RT}{v - b}$$

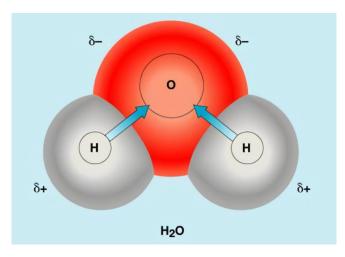
(2) 分子间有吸引力,减少对壁面的压力

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

吸引力 $\propto \rho^2$

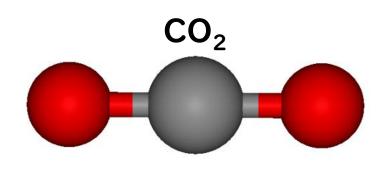
范德瓦尔斯方程

极性分子/非极性分子: 电荷分布的均匀性、 对称性



正负电荷中心不重合

分子<mark>极性大小</mark>:两个带电荷 $-\delta$ 和+ δ 的电荷相距l时,偶极矩 μ



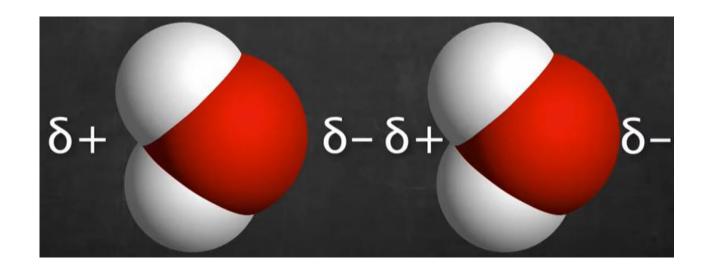
正负电荷中心重合

$$u = q \times l$$

Dipole Moments of Molecules (in Debye Units:1 D = 3.336*10-30 C·m)

Molecules			
Alkanes	0 ^b	H ₂ O	1.85°
C ₆ H ₆ (benzene)	0 ^d	$C_nH_{2n+1}OH$ (alcohols)	1.7
CCI ₄	0	C ₆ H ₁₁ OH (cyclohexanol)	1.7
CO ₂	0 ^e	$OMCTS^f$	0.42
СО	0.11	CH₃COOH (acetic acid)	1.7
CHCl₃ (chloroform)	1.06	C ₂ H ₄ O (ethylene oxide)	1.9
HCI	1.08	CH ₃ COCH ₃ (acetone)	2.9
HF	1.91 ^c	HCONH ₂ (formamide)	3.7 ^c
NH ₃	1.47	C ₆ H ₅ OH (phenol)	1.5
CH₃Cl	1.87	C ₆ H ₅ NH ₂ (aniline)	1.5
NaCl	8.5	C ₆ H ₅ CI (chlorobenzene)	1.8
CsCl	10.4	C ₆ H ₅ NO ₂ (nitrobenzene)	4.2

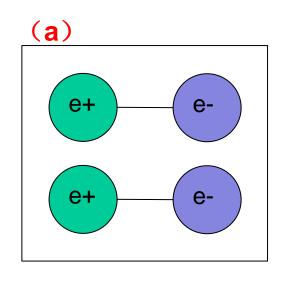
Reference: Intermolecular and Surface Forces (Third Edition), Jacob N. Israelachvili

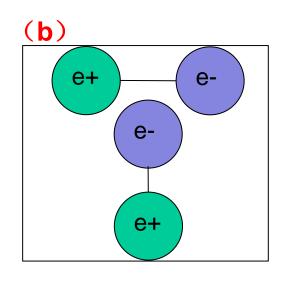


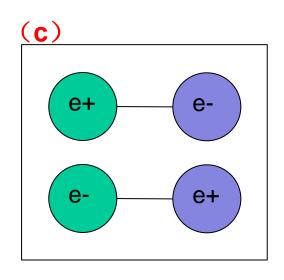
- (1)取向力(Keesom力, dipole-dipole force)
- (2) 诱导力 (Debye力, dipole-induced dipole force)
- (3) 色散力 (London力, dispersion force)

(1) 取向力 (Keesom力)

偶极-偶极相互作用(dipole-dipole force)







相互排斥

无相互作用

强相互吸引

(1) 取向力(Keesom力)

- 当两个偶极矩方向相同时,相互作用势能为负,并达到最小值;
- 当两个偶极矩方向相反时,势能为正,并达到最大值。
- 如果 μ_1 , μ_2 在各种相对方向出现的几率相同,则相互作用平均 势能 $E_{\nu}=0$ 。
- 按波尔茨曼分布定律,温度越低, μ_1 和 μ_2 在低势能的相对方 向出现的可能性越大,因此对各种方向加和后,平均静电势 能 $E_k \neq 0$,而是:

$$E_k = -\frac{2}{3} \frac{\mu_1^2 \mu_2^2}{kTr^6}$$

式中,r为中心距,k为波尔茨曼常数, ϵ_0 为真空介电常数。

(2)诱导力 (Debye力)

分子的电荷分布受到其他分子电场的影响,产生诱导极矩,诱导偶极矩 μ 的平均值与分子所在位置的有效电场 F成正比。

$$\mu = \alpha F \tag{7-2}$$

式中 α 为极化率,其值与温度无关。

- 永久偶极矩与被其诱导的偶极矩之间的相互作用,称为诱导作用。
- 诱导作用可发生在非极性分子和极性分子之间,也发生在极性分子之间。

不同分子间的诱导相互作用势能 E_D 为:

$$E_D = -\frac{(\alpha_1 \mu_2^2 + \alpha_2 \mu_1^2)}{r^6}$$

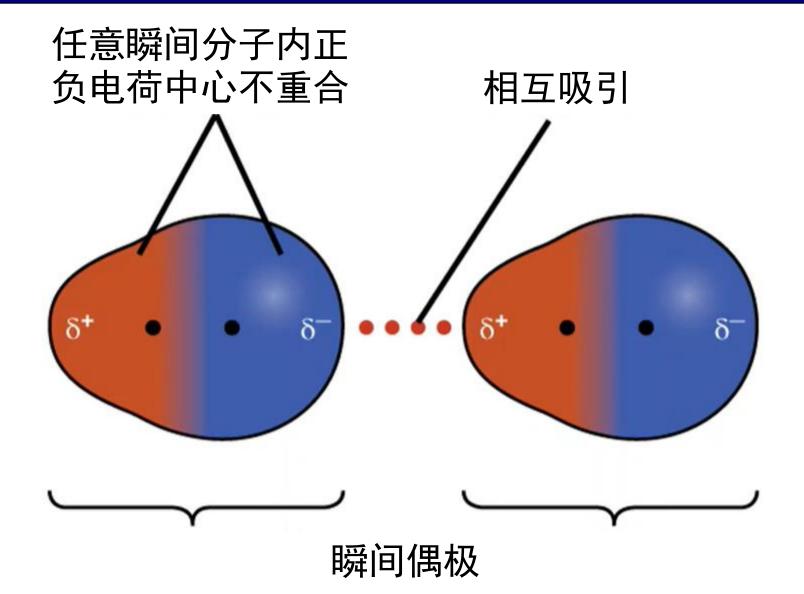
(3) 色散力 (London力)

- 惰性气体分子间依然存在作用力;
- 极性分子考虑静电力和诱导力后,实验值仍然大

直观理解:对非极性分子(He、CO₂),时均偶极矩为零,但在任意一个瞬间,电子与原子核内质子不重合,即正负电荷中心不重合,原子内产生了一个瞬时偶极矩,该偶极矩的电场极化了周围的中性分子,使它内部产生一个诱导偶极矩,由此产生的偶极间相互作用称为色散作用

$$E_L = -\frac{3}{2} \frac{I_1 I_2}{I_1 + I_2} \frac{\alpha_1 \alpha_2}{r^6}$$

(3) 色散力 (London力)



对于具有偶极矩和极化率的同类分子,三种相互作用势能之和为

$$E = E_K + E_D + E_L$$

范得瓦尔斯引力的特征:

- 存在于分子和原子间的一种作用力;
- 它是引力,作用势能的数量级0.41868~4.1868 J/mol
- 范得瓦尔斯引力的作用范围是3~5×10⁻¹⁰ m
- 主要作用力是色散力,但对极性极强的分子,取向力 占主导。

Energy in a Vacuum for Various Pairs of Molecules at 293K

	various Pairs of Molecules at 293N
	Van der Waals Energy Coefficients C (10 ⁻⁷⁹ J m ⁶)
imilar Molecules	Total VDW Energ

Ionization

 $I = h\nu_1 \text{ (eV)}^b$

21.6

12.6

12.7

11.6

10.4

11.3

10.2

12.6

Potential

Induction, Orientation, and Dispersion Free Energy Contributions to the Total Van der Waals

Cind

 $2u^2\alpha_0$

 $(4\pi\varepsilon_0)^{\overline{2}}$

0

0

6

32

10

10

 $u_1^2\alpha_{02}+u_2^2\alpha_{01}$

 $(4\pi\varepsilon_0)^2$

0

Corient

 $3kT(4\pi\varepsilon_0)^2$

0

0

11

101

38

96

 $u_1^2 u_2^2$

0

0

0

3

0.2

Cdisp

 $3\alpha_0^2 h v_1$

 $4(4\pi\epsilon_0)^2$

4

102

106

182

370

282

63

33

 $3\alpha_{01}\alpha_{02}h\nu_1\nu_2$

19

197

11

58

 $3kT(4\pi\varepsilon_0)^2 \ 2(4\pi\varepsilon_0)^2(\nu_1+\nu_2)$

Total VDW Energy C_{VDW}

Theoretical

4

102

123

189

372

415

111

139

19^c

205

12

67

Eq. (6.17)

From

Gas Law

Eq. (6.14)

101

157

207

350

509

162

175

4

Dispersion Energy

to Total

(%)

Contribution

(Theoretical)

100

100

86

96

99

68

57

24

100

96

92

87

	Van der Waals Er
Similar Molecules	

Permanent

Dipole

u (D) a

Moment

0

0

1.08

0.78

0.38

1.87

1.47

1.85

Electronic

Interacting

Molecules

CH₄-CH₄

HCI-HCI

HBr-HBr

CH₃Cl-CH₃Cl

Dissimilar Molecules

NH₃-NH₃

 $H_2O - H_2O$

Ne-CH₄

HCI-HI

H₂O-Ne

H₂O-CH₄

HI-HI

Ne-Ne

Polarizability

 (10^{-30}m^3)

0.39

2.60

2.63

3.61

5.44

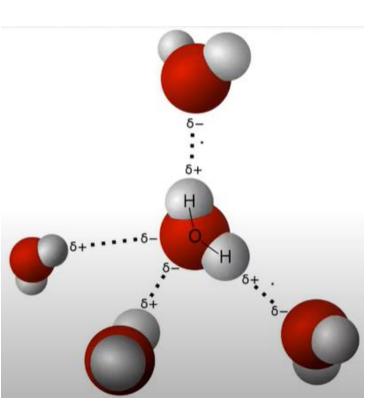
4.56

2.26

1.48

2. 氢键

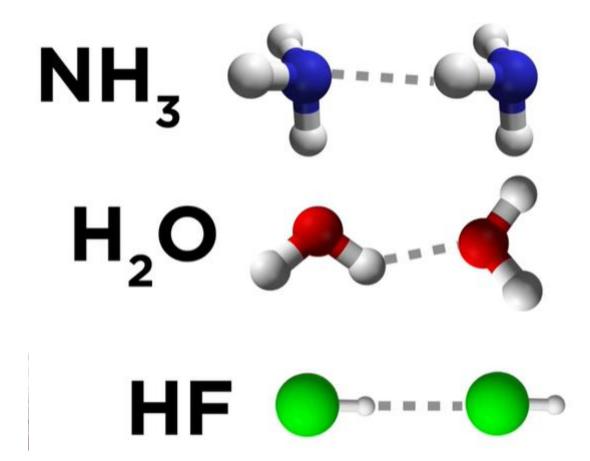
$X-H \cdot \cdot \cdot Y$



水的四面体结构

氢原子可以同时和两个电负性很大而 原子半径较小的原子相结合。对 H-X的 分子,与Y的氢键强弱,与X 及Y 的电 负性有关, 电负性大, 氢键越强, 还与 的半径有关。半径越小越能接近, 氢键越强。

一些典型氢键



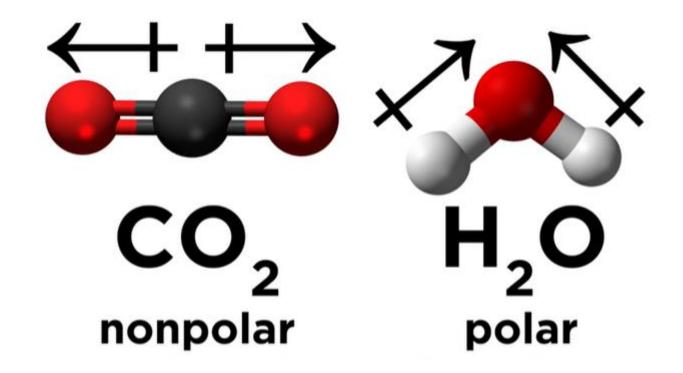
3. 相斥力

分子距离很小时产生相斥作用,当电子云相互渗透时,电子总电荷有相斥作用,核荷间也有相斥作用。

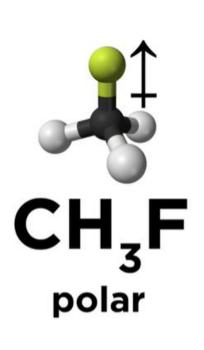
二、实际气体的区分

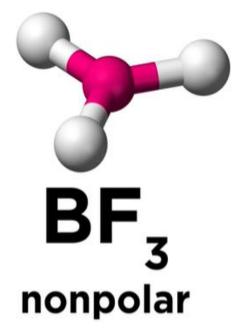
实际气体的种类:

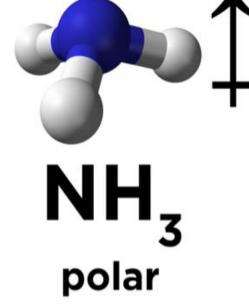
- 极性气体:极性分子组成的气体,如:水蒸气、氨、 部分氟里昂气体等,静电力较大。
- 非极性气体: 非极性分子组成的气体,如:重的惰性气体等,主要是色散力。
- 量子气体:分子量很小的轻气体,如:氢、轻的惰性气体等,由于气体分子占据的能级数很少,能量变化是离散型而不是连续型。











流体极性判别式(匹察(Pitzer)提出)

$$\mu_r = \frac{\mu^4 p_c^2}{T_c^4} \tag{7-3}$$

μ为偶极矩; *P_c, T_c*分别 为临界压力和临界温度

非极性流体: $\mu_r = 0$

微极性流体: $\mu_r \leq 0.5 \times 10^{-6}$

强极性流体: $\mu_r > 0.5 \times 10^{-6}$

标准流体: 非极性流体和微极性流体

举例

非极性流体: $CH_4, C_2H_6, C_3H_8, C_4H_8$

微极性流体: $NO, NO_2, CO, N_2, R_{11}, R_{12}, R_{13}, R_{114}$

强极性流体: $H_2O, NH_3, C_2H_5OH, SO_2, R_{142}$

范德瓦尔斯状态方程定性分析

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

范德瓦尔斯方程

$$v^3 - \left(b + \frac{RT}{p}\right)v^2 + \frac{a}{p}v - \frac{ab}{p} = 0$$

在 (p,T) 下,v有三个根

一个实根,两个虚根 三个不等实根 三个相等实根

范德瓦尔斯状态方程定性分析

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

范德瓦尔斯方程

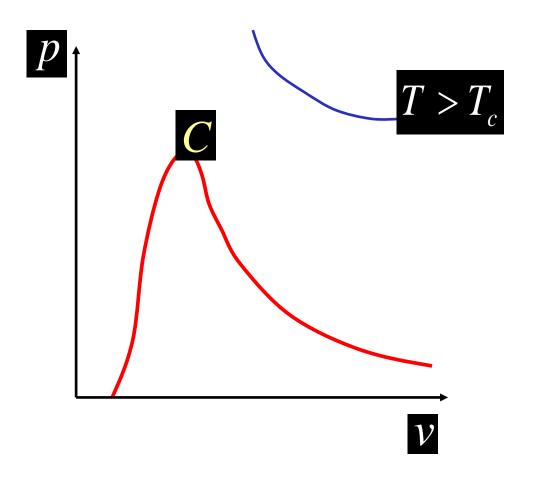
1、高温时
$$T > T_C$$
 $\frac{a}{v^2}$ 项可忽略

$$\frac{a}{v^2}$$
 项可忽略

$$p(v-b) = RT$$
 pv 图上 (T) 是双曲线

一个实根,两个虚根

实际气体的p-v图



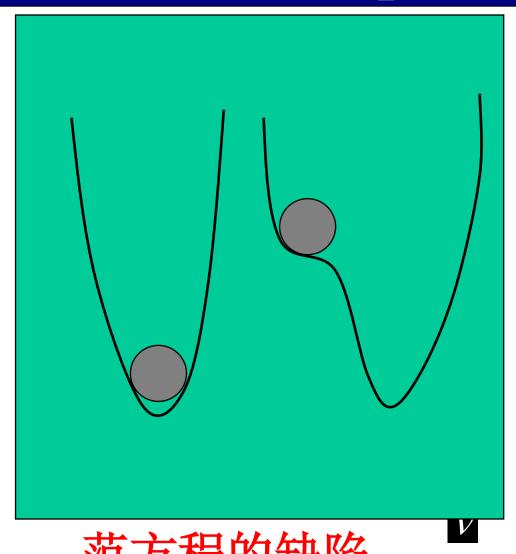
范德瓦尔斯状态方程定性分析

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

范德瓦尔斯方程

2、低温时

实际气体的p-v图



范方程的缺陷

AM:亚稳定状态 过冷蒸气

$$T < T_s(p)$$

BN:亚稳定状态 过热液体

$$T > T_s(p)$$

NM:不存在

$$p \mid v \mid$$

范德瓦尔斯状态方程定性分析

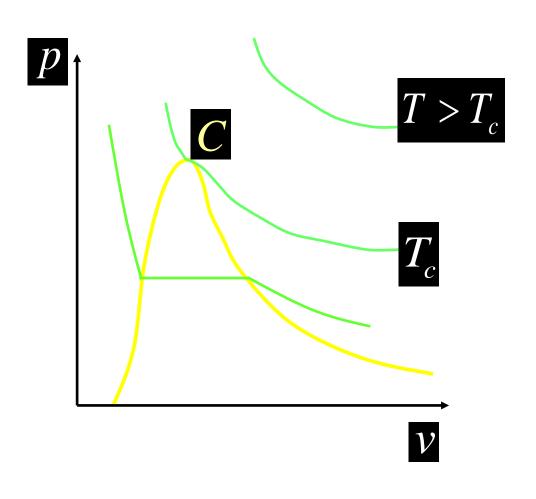
$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

范德瓦尔斯方程

3、临界点C

三个相等实根

实际气体的p-v图



拐点

$$\left(\frac{\partial p}{\partial v}\right)_{T_C} = 0$$

$$\left(\frac{\partial^2 p}{\partial v^2}\right)_{T_C} = 0$$

范.德瓦尔斯方程 定量计算不准确

$$p_C = \frac{RT_C}{v_C - b} - \frac{a}{v_C^2}$$
 多数物质 $Z_C = 0.23$ 0.29

$$p_C = \frac{a}{27b^2}$$
 $T_C = \frac{8a}{27Rb}$ $v_C = 3b$

$$a = \frac{27(RT_C)^2}{64p_C}$$
 $b = \frac{RT_C}{8p_C}$ 不准确实验确定表10-1

C点压缩因子
$$Z_C = \frac{p_C v_C}{RT_C} = \frac{3}{8} = 0.375$$

一些气体的临界参数与范德瓦尔斯常数

物质	Tc, K	p.,×10° Pa	Vm,c, m³/kmol	$oldsymbol{Z}_{ extsf{o}} = rac{oldsymbol{p}_{ extsf{o}} oldsymbol{V}_{ extsf{mc}}}{R_{ extsf{M}} oldsymbol{T}_{ extsf{o}}}$	范德瓦尔常数	
					$a, 10^5 \text{Pa} \cdot \left(\frac{\text{m}^3}{\text{kmol}}\right)^2$	b, m³/kmol
空气	133	37.7	0.0829	0.284	1.358	0.0364
一氧化碳	133	35.0	0.0928	0.294	1.463	0.0394
正丁烷	425. 2	38.0	0.257	0.274	13.80	0.1196
氟里昂12	385	40.1	0.214	0.270	10.78	0.0998
甲烷	190.7	46.4	0.0991	0.290	2.285	0.0427
氮	126.2	33.9	0.0897	0.291	1.361	0.0385
乙烷	305.4	48.8	0.221	0.273	5.575	0.0650
丙烷	370	42.7	0.195	0.276	9.315	0.0900
二氧化硫	431	78.7	0.124	0.268	6.837	0.0568

例

测量值: 70.91E+05 Pa

已知:体积为0.03m²容器中装有3.7kg、215K的C0 试用(1)理想气体状态方程;(2)范德瓦尔斯状态方程计算气体压力

比容 $v = 0.03/3.7 = 0.00811 m^3 / kg$; CO摩尔质量 28kg/kmo1,摩尔体积 0.227 m³/kmo1。摩尔气体常数R = 8.314 J/(kmo1 • K)

(1) 理想气体状态方程

$$p = \frac{RT}{V_m} = \frac{8.314 \text{J/(kmol \cdot K)} \times 215 \text{K}}{0.227 \text{m}^3/\text{kmol}} = 78.7 \text{E} + 05 \text{Pa}$$

(2) 范德瓦尔斯状态方程 b = 0.0394 m³/kmo1

$$p = \frac{R_m T}{V_m - b} - \frac{a}{V_m^2}$$
 $P = 66.9E+05 Pa$

其它经验性状态方程

$$p = \frac{RT}{v - b} - \frac{a}{T^{0.5}v(v + b)}$$
 R-K方程 $Z_C = 0.333$

R-K方程

$$Z_{c} = 0.333$$

$$p = \frac{RT}{v - b} - \frac{a(T)}{v(v + b) + b(v - b)}$$
P-R方程

$$p = \sum_{i=1}^{5} \left[A_i + B_i + C_i e^{(K,T/T_C)} \right] (v-b)^{-i}$$

普遍化状态方程和对比态方程

上述经验性状态方程,不同物质的a和b不同,没有通用性。 $a = \frac{27(RT_c)^2}{64p_c} \quad b = \frac{RT_c}{8p_c}$

a和b的拟合需要足够的实验数据。

能不能找到一个普遍化的通用的状态方程,

虽不太准,但能估算。

相似原理

角相似,形状相似

普遍化范德瓦尔斯状态方程

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$

$$cp_r = \frac{8T_r}{3v_r - 1} - \frac{3}{v_r^2}$$

$$\left(p + \frac{3p_c v_c^2}{v^2}\right) \left(v - \frac{5 \% \text{ 特殊无关}}{3}\right) = KI$$

$$p_{c}v_{c}\left(p_{r}+\frac{3}{(v_{r})^{2}}\right)\left(v_{r}-\frac{1}{3}\right)=\frac{8}{3}T_{r}\frac{a}{3v_{c}^{2}}$$

普遍化状态方程

发现各物质物性曲线相似

临界点C,均有
$$\left(\frac{\partial p}{\partial v}\right)_{T_C} = 0$$
 $\left(\frac{\partial^2 p}{\partial v^2}\right)_{T_C} = 0$

$$\mathbf{p}_r = \frac{p}{p_C} \qquad v_r = \frac{v}{v_C} \qquad T_r = \frac{T}{T_C}$$

对比参数

用 p_r, v_r, T_r 建立方程, 有可能得 到普遍化方程

对比态原理

Principle of Corresponding States

不同物质,p,T相同,v不同

可以满足同一个 $f(p_r, v_r, T_r) = 0$

若两个对比参数相等,另一个必相等

一 对比态原理

对比态方程

满足同一个对比态方程,称为热力学相似的物质。

对比态原理

$$f\left(p_r, v_r, T_r\right) = 0$$

$$v_r = f\left(p_r, T_r\right)$$

$$Z = \frac{pv}{RT} = \frac{p_C V_C}{RT_C} \frac{p_r v_r}{T_r} = Z_C \frac{p_r v_r}{T_r}$$

$$\frac{Z}{Z_C} = f_1(p_r, T_r)$$

$$Z = f_2(p_r, T_r, Z_C)$$

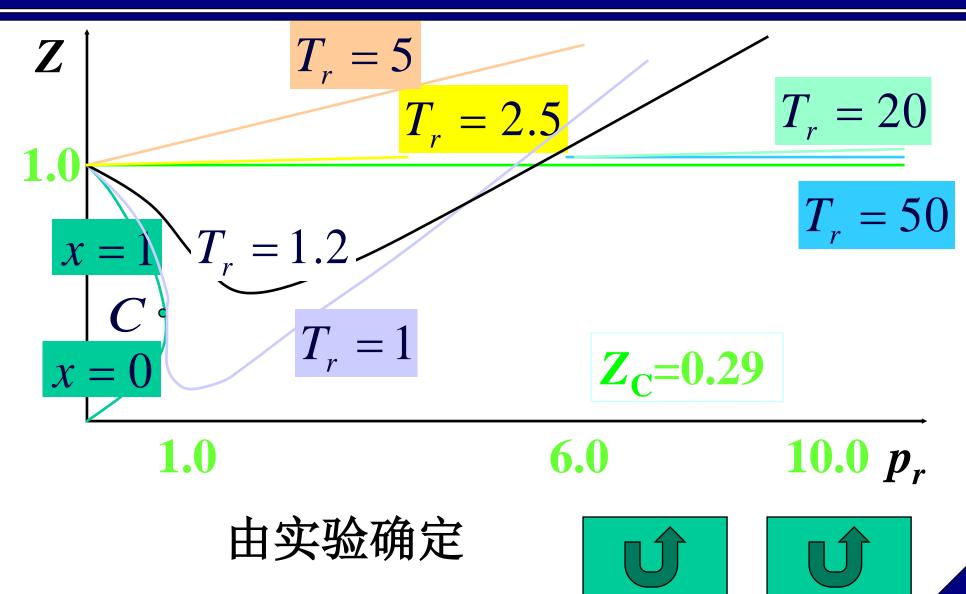
$$Z = f_2(p_r, T_r, Z_C)$$

另一形式的对比态方程

大多数物质
$$Z_c = 0.23 \square 0.29$$

取
$$Z_{\mathbf{C}}$$
为某常数 $Z = f_3(p_r, T_r)$

通用压缩因子图



通用压缩因子图的用法

已知某未知物质的 T_{C}, p_{C}, R

已知
$$p,T \Rightarrow p_r,T_r \Rightarrow Z \Rightarrow v$$

已知

$$v, T \Rightarrow$$
设 $p_1 \Rightarrow p_{r1}, T_r \Rightarrow Z \Rightarrow p_{1'}$ 再设 $p_2 \Rightarrow p_{r2}, T_r \Rightarrow Z \Rightarrow p_{2'}$

已知

$$v, p \Rightarrow$$
 设 $T_1 \Rightarrow p_r, T_{r1} \Rightarrow Z \Rightarrow T_{1'}$ 再设 $T_2 \Rightarrow p_r, T_{r2} \Rightarrow Z \Rightarrow T_{2'}$

多常数半经验方程

以上方程都不适用于 量子气体及强极性气体

- BWR方程
- L-K方程
- 马丁—候方程

一、BWR方程

$$P = \frac{RT}{v} + (B_0 RT - A_0 - \frac{C_0}{T^2}) \frac{1}{v^2} + (bRT - a) \frac{1}{v^3} + \frac{a\alpha}{v^6} + \frac{c(1 + \gamma/v^2)}{T^2} \frac{1}{v^3} \ell^{-\gamma/v^2}$$

适用范围: 烃类气体, 非极性和轻微极性气体。 且 $\rho < 1.8 \rho_c$, 液相区及气液相平衡。

二、马丁一候方程

$$p = \frac{RT}{v - b} + \frac{A_2 + B_2T + C_2 \exp(-\frac{KT}{T_c})}{(v - b)^2} + \frac{A_3 + B_3T + C_3 \exp(-\frac{KT}{TC})}{(v - b)^3}$$

$$+\frac{A_4}{(v-b)^4} + \frac{A_5 + B_5T + C_5 \exp(-\frac{KT}{TC})}{(v-b)^5}$$

式中: K=5. 475, 共 A_2 , A_3 , A_4 , A_5 . B_2 , B_3 , B_5 . C_2 , C_3 , C_5 , b 11个常数。

适用范围:H₂O, NH₃, 烃类, 氟里昂气体。

总结

- L-K方程和BWR方程用于非极性和轻微极性气体容积计算,对于烃类,误差在以内,对于非烃气体,误差在2~3%以内。
- L-K方程和BWR方程用于在临界区附近及强极性流体、氢键流体气体容积计算,偏差增大。
- L-K方程和BWR方程还可用于液相性质及汽液相平 衡性质。
- RKS, PR方程也可用于汽相、液相及相平衡,
- 对极性气体,可用马丁——侯方程。