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ABSTRACT: In the first part of the paper, we show that the constraining potentials introduced to mimic
entanglement effects in Edwards’ tube model and Flory’s constrained junction model are diagonal in the
generalized Rouse modes of the corresponding phantom network. As a consequence, both models can
formally be solved exactly for arbitrary connectivity using the recently introduced constrained mode model.
In the second part, we solve a double tube model for the confinement of long paths in polymer networks
which is partially due to cross-linking and partially due to entanglements. Our model describes a nontrivial
crossover between the Warner-Edwards and the Heinrich-Straube tube models. We present results for
the macroscopic elastic properties as well as for the microscopic deformations including structure factors.

I. Introduction

Polymer networks1 are the basic structural element
of systems as different as tire rubber and gels and have
a wide range of technical and biological applications.
From a macroscopic point of view, rubberlike materials
have very distinct visco- and thermoelastic properties.1,2

They reversibly sustain elongations of up to 1000% with
small strain elastic moduli which are 4 or 5 orders of
magnitude smaller than those for other solids. Maybe
even more unusual are the thermoelastic properties
discovered by Gough and Joule in the 19th century:
when heated, a piece of rubber under a constant load
contracts, and conversely, heat is released during
stretching. This implies that the stress induced by a
deformation is mostly due to a decrease in entropy. The
microscopic, statistical mechanical origin of this entropy
change remained obscure until the discovery of poly-
meric molecules and their high degree of conformational
flexibility in the 1930s. In a melt of identical chains,
polymers adopt random coil conformations3 with mean-
square end-to-end distances proportional to their length,
〈rb2〉 ∼ N. A simple statistical mechanical argument,
which only takes the connectivity of the chains into
account, then suggests that flexible polymers react to
forces on their ends as linear, entropic springs. The
spring constant, k ) (3kBT)/〈rb2〉, is proportional to the
temperature. Treating a piece of rubber as a random
network of noninteracting entropic springs (the phan-
tom model4-6) qualitatively explains the observed be-
havior, includingsto a first approximationsthe shape
of the measured stress-strain curves.

Despite more than 60 years of growing qualitative
understanding, a rigorous statistical mechanical treat-
ment of polymer networks remains a challenge to the
present day. Similar to spin glasses,7 the main difficulty
is the presence of quenched disorder over which ther-
modynamic variables need to be averaged. In the case
of polymer networks,8-10 the vulcanization process leads
to a simultaneous quench of two different kinds of
disorder: (i) a random connectivity due to the introduc-
tion of chemical cross-links and (ii) a random topology
due to the formation of closed loops and the mutual
impenetrability of the polymer backbones. Since for
instantaneous cross-linking monomer-monomer con-
tacts and entanglements become quenched with a
probability proportional to their occurrence in the melt,
ensemble averages of static expectation values for the

chain structure etc. are not affected by the vulcanization
as long as the system remains in its state of preparation.

For a given connectivity the phantom model Hamil-
tonian for noninteracting polymer chains formally takes
a simple quadratic form,4-6 so that one can at least
formulate theories which take the random connectivity
of the networks fully into account.11-13 The situation is
less clear for entanglements or topological constraints,
since they do not enter the Hamiltonian as such but
divide phase space into accessible and inaccessible
regions. In simple cases, entanglements can be charac-
terized by topological invariants from mathematical
knot theory.8,9 However, attempts to formulate topologi-
cal theories of rubber elasticity (for references see ref
14) encounter serious difficulties. Most theories there-
fore omit such a detailed description in favor of a mean-
field ansatz where the different parts of the network
are thought to move in a deformation-dependent elastic
matrix which exerts restoring forces toward some rest
positions. These restoring forces may be due to chemical
cross-links which localize random paths through the
network in space15 or to entanglements. The classical
theories of rubber elasticity1,16-20 assume that entangle-
ments act only on the cross-links or junction points,
while the tube models2,21-26 stress the importance of the
topological constraints acting along the contour of
strands exceeding a minimum “entanglement length”,
Ne. Originally devised for polymer networks, the tube
concept is particularly successful in explaining the
extremely long relaxation times in non-cross-linked
polymer melts as the result of a one-dimensional,
curvilinear diffusion called reptation27 of linear chains
of length N . Ne within and finally out of their original
tubes. Over the past decade, computer simulations14,28-30

and experiments31-33 have finally also collected mount-
ing evidence for the importance and correctness of the
tube concept in the description of polymer networks.

More than 30 years after its introduction and despite
its intuitivity and its success in providing a unified view
on entangled polymer networks and melts,2,23-26 there
exists to date no complete solution of the Edwards tube
model for polymer networks. Some of the open problems
are apparent from a recent controversy on the inter-
pretation of SANS data.32-37 Such data constitute an
important experimental test of the tube concept, since
they contain information on the degree and deformation
dependence of the confinement of the microscopic chain
motion and therefore allow for a more detailed test of
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theories of rubber elasticity than rheological data.38-40

On the theoretical side, the original approach of
Warner and Edwards15 used mathematically rather
involved replica methods26 to describe the localization
of a long polymer chain in space due to cross-linking.
The replica method allows for a very elegant, self-
consistent introduction of constraining potentials, which
confine individual polymer strands to random-walk like
tubular regions in space while ensemble averages over
all polymers remain identical to those of unconstrained
chains. Later Heinrich and Straube25,32 recalculated
these results for a solely entangled system where they
argued that there are qualitative differences between
confinement due to entanglements and confinement due
to cross-linking. In particular, they argued that the
strength of the confining potential should vary affinely
with the macroscopic strain, resulting in fluctuations
perpendicular to the tube axis which vary only like the
square root of the macroscopic strain.

Replica calculations provide limited insight into physi-
cal mechanism and make approximations which are
difficult to control.12 It is therefore interesting to note
that Flory was able to solve the, in many respects
similar, constrained-junction model17 without using
such methods. Recent refinements of the constrained-
junction model such as the constrained-chain model41

and the diffused-constrained model42 have more or less
converged to the (Heinrich and Straube) tube model,
even though the term is not mentioned explicitly.
Another variant of this model was recently solved by
Rubinstein and Panyukov.43 In particular, the authors
illustrated how nontrivial, subaffine deformations of the
polymer strands result from an affinely deforming
confining potential.

While tube models are usually formulated and dis-
cussed in real space, two other recent papers have
pointed independently to considerable simplifications of
the calculations in mode space. Read and McLeish35

were able to rederive the Warner-Edwards result in a
particularly simple and transparent manner by showing
that a harmonic tube potential is diagonal in the Rouse
modes of a linear chain. Complementary, one of the
present authors introduced a general constrained mode
model (CMM),44 where confinement is modeled by
deformation dependent linear forces coupled to (ap-
proximate) eigenmodes of the phantom network instead
of a tube-like potential in real space. This model can
easily be solved exactly and is particularly suited for
the analysis of simulation data, where its parameters,
the degrees of confinement for all considered modes, are
directly measurable. Simulations of defect-free model
polymer networks under strain analyzed in the frame-
work of the CMM14 provide evidence that it is indeed
possible to predict macroscopic restoring forces and
microscopic deformations from constrained fluctuation
theories. In particular, the results support the choice
of Flory,17 Heinrich and Straube,25 and Rubinstein and
Panyukov43 for the deformation dependence of the
confining potential. Despite this success, the CMM in
its original form suffers from two important deficits: (i)
due to the multitude of independent parameters it is
completely useless for a comparison to experiment, and
(ii) apart from recovering the tube model on a scaling
level, ref 44 remained fairly vague on the exact relation
between the approximations made by the Edwards tube
model and the CMM, respectively.

In the present paper, we show that the two models
are, in fact, equivalent. The proof, presented in section
IIB is a generalization of the result by Read and
McLeish to arbitrary connectivity. It provides the link
between the considerations of Eichinger,11 Graessley,45

Mark,46 and others on the dynamics of (micro) phantom
networks and the ideas of Edwards and Flory on the
suppression of fluctuations due to entanglements. As a
consequence, the CMM can be used to formally solve
the Edwards tube model exactly, while in turn the
independent parameters of the CMM are obtained as a
function of a single parameter: the strength of the tube
potential. Quite interestingly, it turns out that the
entanglement contribution to the shear modulus de-
pends on the connectivity of the network. To explore the
consequences, we discuss in the second part the intro-
duction of entanglement effects into the Warner-
Edwards model, which represents the network as an
ensemble of independent long paths comprising many
strands. Besides recovering some results by Rubinstein
and Panyukov for entanglement dominated systems, we
also calculate the single chain structure factor for this
controversial case.32-37 Finally we propose a “double
tube” model to describe systems where the confinement
of the fluctuations due to cross-links and due to en-
tanglements is of similar importance and where both
effects are treated within the same formalism.

II. Constrained Fluctuations in Networks of
Arbitrary Connectivity

A. The Phantom Model. The Hamiltonian of the
phantom model4-6 is given by Hph ) k/2∑〈i,j〉

M rij
2, where

〈i, j〉 denotes a pair of nodes i, j ∈1, ... , M which are
connected by a polymer chain acting as an entropic
spring of strength k ) (3kBT)/〈rb2〉, and rbij(t) ) rbi(t) -
rbj(t) the distance between them. To simplify the notation,
we always assume that all elementary springs have the
same strength k. The problem is most conveniently
studied using periodic boundary conditions, which span
the network over a fixed volume10 and define the
equilibrium position RBi ) (Xi, Yi, Zi). A conformation of
a network of harmonic springs can be analyzed in terms
of either the bead positions rbi(t) or the deviations ubi(t)
of the nodes from their equilibrium positions RBi. In this
representation, the Hamiltonian separates into two
independent contributions from the equilibrium exten-
sions of the springs and the fluctuations. For the
following considerations it is useful to write fluctuations
as a quadratic form.11 Finally, we note that the problem
separates in Cartesian coordinates R ) x, y, z due to
the linearity of the springs. In the following we simplify
the notation by writing the equations only for one
spatial dimension:

Here u denotes a M-dimensional vector with (u)i ≡ (ubi)x.
K is the connectivity or Kirchhoff matrix whose diagonal
elements (K)ii ) fik are given by the node’s functionality
(e.g., a node which is part of a linear chain is connected
to its two neighbors, so that fi ) 2 in contrast to a four-
functional cross-link with fi ) 4). The off-diagonal
elements of the Kirchhoff matrix are given by (K)ij ) -
k, if nodes i and j are connected and by (K)ij ) 0
otherwise. Furthermore, we have assumed that all
network strands have the same length.

Hph )
k

2
∑
〈i, j〉

XijR
2 +

1

2
ut K u. (1)
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The fluctuations can be written as a sum over
independent modes ep which are the eigenvectors of the
Kirchhoff matrix: Kep ) kpep where the ep can be
chosen to be orthonormal ep‚ep′ ) δpp′. The transforma-
tion to the eigenvector representation ũ ) S u and back
to the node representation u ) S-1ũ is mediated by a
matrix S whose column vectors correspond to the ep.
By construction, S is orthogonal with St ) S-1. Fur-
thermore, the Kirchhoff matrix is diagonal in the
eigenvector representation (K̃)pp ) (S-1 K S)pp ) kp. The
Hamiltonian then reduces to

Since the connectivity is the result of a random
process, it is difficult to discuss the properties of the
Kirchhoff matrix and the eigenmode spectrum in gen-
eral.11,45 The following simple argument44 ignores these
difficulties. The idea is to relate the mean square
equilibrium distances 〈Xij

2〉 to the thermal fluctuations
of the phantom network.

Consider the network strands before and after the
formation of the network by end-linking. In the melt
state, the typical mean square extension 〈rb2〉 is entirely
due to thermal fluctuations, while 〈rb〉 ) 0. In the cross-
linked state, the strands show reduced thermal fluctua-
tions 〈ubij

2〉 around quenched, nonvanishing mean exten-
sions 〈RBij

2〉. However, the ensemble average of the total
extension 〈RBij

2〉 + 〈ubij
2〉is not affected by the end-linking

procedure. The fluctuation contribution 〈ubij
2〉 depends

on the connectivity of the network and can be estimated
using the equipartition theorem. The total thermal
energy in the fluctuations, Ufluc, is given by (3/2)kBT
times the number of modes and therefore Ufluc )
(3/2)kBTNnodes ) (2/f)(3/2)kBTNstrands, where Nnodes and
Nstrands are the number of junction points and network
strands, which are related by Nstrands ) (f/2)Nnodes in an
f-functional network. Equating the thermal energy per
mode to (k/2)〈ubij

2〉, one obtains6,44,45

Using these results, one can finally estimate the
elastic properties of randomly cross- or end-linked
phantom networks. Since the fluctuations are indepen-
dent of size and shape of the network, they do not
contribute to the elastic response. The equilibrium
positions of the junction points, on the other hand,
change affinely in the macroscopic strain. The elastic
free energy density due to a volume-conserving, uniaxial
elongation with λ| ) λ⊥

-1/2 ) λ is simply given by

where Fstrand is the number density of elastically active
strands. For incompressible materials such as rubber,
the shear modulus is given by 1/3 of the second derivative
of the corresponding free energy density with respect
to the strain parameter λ. In response to a finite strain,

the system develops a normal tension σT:

Experimentally observed stress-strain curves show
deviations from eq 8. Usually the results are normalized
to the classical prediction and plotted vs the inverse
strain 1/λ, since they often follow the semiempirical
Mooney-Rivlin form

B. The Constraint Hamiltonian. Most theories
introduce the entanglement effects as additional, single-
node terms into the phantom model Hamiltonian, which
constrain the movement of the monomers and junction
points. The standard choice are anisotropic, harmonic
springs of strength l6(λ)between the nodes and points
êBi(λ) which are fixed in space:

While all models assume that the tube position changes
affinely with the macroscopic deformation

there are two different choices for the deformation
dependence of the confining potential:

Since this choice of Hconstr leaves the different spatial
dimensions uncoupled, we consider the problem again
in one dimension and express Hconstr in the eigenvector
representation of the Kirchhoff matrix of the uncon-
strained network. Using vb (λ) ) êBx(λ) - XB (λ) ) λ6vb (λ )
1) one obtains

Hph ) k
2 ∑

〈i, j〉
Xij

2 + ∑
p

kp

2
ũp

2 (2)

〈ubij
2〉 ) 2

f
〈rb2〉 (3)

〈RBij
2〉 ) (1 - 2

f )〈rb2〉 (4)

∆Fph(λ) ) (λ2 + 2
λ

- 3) 〈Rstrand
2〉

〈rb2〉
Fstrand

) (λ2 + 2
λ

- 3)(1 - 2
f )Fstrand (5)

Gph ) 1
V

1
3

d2∆Fph(λ)

dλ2 |
λ)1

(6)

) (1 - 2
f ) FstrandkBT (7)

σT ) (λ2 - 1
λ)Gph (8)

σT

λ2 - 1
λ

≈ 2C1 +
2C2

λ
(9)

Hconstr ) ∑
i

1

2
(rbi - êBi(λ))t l6(λ) (rbi - êBi(λ)) (10)

êBi(λ) ) λ6êBi(λ ) 1) (11)

l6(λ) ) l6(λ ) 1) (12)

l6(λ) ) λ6-2 l6(λ ) 1) (13)

Hconstr )
l(λ)
2

(u - v)t(u - v)

)
l(λ)
2

(S-1ũ - S-1ṽ)t(S-1ũ - S-1ṽ)

)
l(λ)
2

(ũ - ṽ)tSS-1(ũ - ṽ) (14)

)
l(λ)
2

(ũ - ṽ)t(ũ - ṽ)

) ∑
p

l(λ)

2
(ũp - ṽp)

2
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Thus, the introduction of the single node springs does
not change the eigenvectors of the original Kirchhoff
matrix. The derivation of eq 14, which is the Hamilto-
nian of the Constrained Mode Model (CMM),44 is a
central result of this work. It provides the link between
the considerations of Eichinger,11 Graessley,45 Mark,46

and others on the dynamics of (micro) phantom net-
works and the ideas of Edwards and Flory on the
suppression of fluctuations due to entanglements.

C. Solution and Disorder Averages: The Con-
strained Mode Model (CMM). Since the total Hamil-
tonian of the CMM

is diagonal and quadratic in the modes, both the exact
solution of the model for given vbp and the subsequent
calculation of averages over the quenched Gaussian
disorder in the vbp are extremely simple.44 In the follow-
ing we summarize the results and give general expres-
sions for quantities of physical interest such as shear
moduli, stress-strain relations, and microscopic defor-
mations.

Consider an arbitrary mode ubp of the polymer net-
work. Under the influence of the constraining potential,
each Cartesian component R will fluctuate around a
nonvanishing mean excitation UBp with

Using the notation δuBp ≡ ubp - UBp, the Hamiltonian for
this mode reads

Expectation values are calculated by averaging over
both the thermal and the static fluctuations, which are
due to the quenched topological disorder (in order to
simplify the notation, we use l ≡ l(λ ) 1), 〈vpR

2〉 ≡ vpR
2(λ

) 1)〉 etc.)

Both distributions are Gaussian and their widths

follow from the Hamiltonian and the condition that the
random introduction of topological constraints on the
dynamics does not affect static expectation values in the
state of preparation. In particular

Eq 21 relates the strength l of the confining potential
to the width of P(vpR). The result, 〈vpR

2〉 ) (1/γp)(kBT/
kp), 〈UpR

2〉 ) γp(kBT/kp), 〈δupR
2〉 ) (1 - γp)(kBT/kp) can

be expressed conveniently using a parameter

which measures the degree of confinement of the modes.
As a result, one obtains for the mean square static
excitations

Quantities of physical interest are typically sums over
the eigenmodes of the Kirchhoff matrix. For example,
the tube diameter is defined as the average width of
the thermal fluctuations of the nodes:

In particular

More generally, distances between any two monomers
rnmR ) rnR - rmR in real space are given by

For the discussion of the elastic properties of the
different tube models it turns out to be useful to define
the sum

Using eq 27, the confinement contribution to the normal
tension2,44 and the shear modulus can be written as

D. Model A: Deformation independent strength
of the Confining Potential. To completely define the
model, one needs to specify the deformation dependence
of the confining potential. One plausible choice is

i.e., a confining potential whose strength is strain
independent. The following discussion will make clear
that this choice leads to a situation which mathemati-
cally resembles the phantom model without constraints.

Using eq 30 the thermal fluctuations (and therefore
also the tube diameter eq 25) are deformation indepen-
dent and remain isotropic in strained systems. The
mean excitations, on the other hand, vary affinely with
the macroscopic strain. This leads to the following
relation for the deformation dependence of the total

0 e γp≡ l
kp + l

e 1 (22)

〈UpR
2(λ)〉 ) λR

2( lR(λ)

kp + lR(λ))2kp + l
l

kBT
kp

(23)

dTR
2(λ) )

1

M
∑

p

〈δupR
2(λ)〉 (24)

dTR
2 )

kBT

Ml
∑

p

γp (25)

〈rnmR
2(λ)〉 ) ∑

p

〈upR
2(λ)〉Sp,nm

2 + λR
2 RnmR

2 (26)

g(λ) )
kBT

V

1

1 - λR
2
∑

p (〈upR
2〉(λ)

〈upR
2〉

- 1) (27)

σT(λ) )
1

V
∑

p

kp (〈up|
2(λ)〉 - 〈up⊥

2(λ)〉)

) (λ2 - 1)g(λ) + (1 - λ-1)g(λ-1/2)
(28)

Gconstr ) g(1) (29)

l6A(λ) ) l6A(λ ) 1) (30)

H ) Hph + Hconstr (15)

UpR(λ) )
lR(λ)

kp + lR(λ)
vpR(λ) (16)

HpR[vpR] )
kp

2
UpR

2(λ) +
lR(λ)

2
(UpR(λ) - vpR(λ))2 +

lR(λ) + kp

2
δupR

2 (17)

〈Ap(λ)〉 ) ∫ dvp ∫ dδup Ap[vp,δup] P(vpR)P(δupR) (18)

〈δupR
2(λ)〉 )

kBT

kp + lR(λ)
(19)

〈vpR
2〉 )

kp + l
kpl

kBT (20)

〈upR
2〉 ) 〈δupR

2〉 + 〈UpR
2〉 ≡ kBT

kp
(21)
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excitation of the modes:

Using eqs 27-29, one obtains via

a classical stress-strain relation:

E. Model B: Affine Deformation of the Confining
Potential. The ansatz

goes back to Ronca and Allegra16 and was used by Flory,
by Heinrich and Straube,25 and by Rubinstein and
Panyukov.43 It corresponds to affinely deforming cavities
and leads to a more complex behavior including correc-
tions to the classically predicted stress-strain behavior.

Using eq 35, the mean excitations of partially frozen
modes as well as the thermal fluctuations, become
deformation dependent. The total excitation of a mode
is given by

Only in the limit of completely frozen modes, γp f 1,
does one find affine deformations with upR(λ) ) λRupR
(λ ) 1).

Concerning the elastic properties, eq 27 takes the
form

while the shear modulus can be written as

Note the different functional form of eqs 34 and 38.
Since 0 e γ e 1, the contribution of confined modes to
the elastic response is stronger in model A than in model
B. Furthermore, within model B, the interplays between
the network connectivity (represented by the eigenmode
spectrum {kp} of the Kirchhoff matrix) and the confining
potential l are different for the shear modulus eq 38 and
the tube diameter eq 25.

F. Model C: Simultaneous Presence of Both
Types of Confinement. Finally, we can discuss a
situation where confinement effects of type A and B are
present simultaneously. Coupling each node to two extra
springs lA(λ) ) lA and lBR(λ) ) lBR/λR

2 leads to the
following Hamiltonian in the eigenmode representation:

Model A and model B are recovered by setting lA and
lB, respectively, equal to zero. Furthermore, we assume,
that both types of confinement can be activated and
deactivated independently. This requires

In the presence of both types of confinement, the mean
excitation of the modes is given by

while the thermal fluctuations are reduced to

Finally the condition that the simultaneous presence
of both constraints does not affect ensemble averages
in the state of preparation requires

From eqs 40-44, one can calculate the deformation
dependent total excitation of the modes:

so that

In the present case, the shear modulus can be written
as

Note that the shear modulus is not simply the sum of

Hp )
kp

2
up

2 +
lA

2
(up - vAp(λ))2 +

lB(λ)
2

(up - vBp(λ))2

(39)

〈vAp
2〉 )

lA + kp

lAkp
(40)

〈vBp
2〉 )

lB + kp

lBkp
(41)

〈Up
2〉(λ) )

lA
2〈vAp

2〉(λ) + lB
2(λ)〈vBp

2〉(λ)

(lA + lB(λ) + kp)
2

+

2lAlB(λ)〈vApvBp〉(λ)

(lA + lB(λ) + kp)
2

(42)

〈δup
2〉(λ) )

kBT

lA + lB(λ) + kp
(43)

〈vApvBp〉 )
kBT
kp

(44)

〈up
2〉(λ)

〈up
2〉

) 1 + (λ2 - 1)( lA

kp + lA +
lB

λ2

+

lB

λ2(lA +
lB

λ2)
(kp + lA +

lB

λ2)2)
(45)

gC(λ) )
kBT

V
∑

p ( lA

kp + lA +
lB

λ2

+

lB

λ2(lA +
lB

λ2)
(kp + lA +

lB

λ2)2) (46)

GC )
kBT

V
∑

p

γAp(1 - γBp)

(1 - γApγBp)
+

γBp(1 - γAp)(γBp(1 - γAp) + γAp(1 - γBp))

(1 - γApγBp)
2

(47)

〈upR
2〉(λ)

〈upR
2〉

) 1 + (λR
2 - 1)

lA

kp + lA
(31)

gA(λ) )
kBT

V
∑

p
( lA

kp + lA
) (32)

σT(λ) ) (λ2 - λ-1)GA (33)

GA )
kBT

V
∑

p

γp (34)

l6B(λ) ) λ6-2 l6B(λ ) 1) (35)

〈upR
2〉(λ)

〈upR
2〉

) 1 + (λR
2 - 1)( lB(λ)

kp + lB(λ))2

(36)

gB(λ) )
kBT

V
∑

p
( lB(λ)

kp + lB(λ))2

(37)

GB )
kBT
V ∑

p
γp

2 (38)
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the contributions from the A and B confinements. While
eqs 34 and 38 are reproduced in the limits γBp ) 0 and
γAp ) 0, respectively, eq 47 reflects the fact that a mode
can never contribute more than kBT to the shear
modulus. Thus, for γBp ) 1 (respectively γAp ) 1) the
pth mode contributes this maximum amount indepen-
dent of the value of γAp (respectively γBp).

An important point, which holds for all three models,
is that it is not possible to estimate the confinement
contribution to the shear modulus from the knowledge
of the absolute strength lA, lB of the confining potentials
alone. Required is rather the knowledge of the relative
strengths γAp,γBp which in turn are functions of the
network connectivity.

G. Discussion. It is not a priori clear, whether
entanglement effects are more appropriately described
by model A or model B. While model A has the benefit
of simplicity, Ronca and Allegra proposed model B,16

because it leads (on length scales beyond the tube
diameter) to the conservation of intermolecular contacts
under strain. Similar conclusions were drawn by Hei-
nrich and Straube25 and Rubinstein and Panyukov.43

In the end, this problem will have to be resolved by a
derivation of the tube model from more fundamental
topological considerations. For the time being, an em-
pirical approach seems to be the safest option. Fortu-
nately, the evidence provided by experiments36 and by
simulations14 points into the same direction.

Since details of the interpretation of the relevant
experiments are still controversial (see section III.D.3),
we concentrate on simulation results where the strain
dependence of approximate eigenmodes of the phantom
model was measured directly.14 Figure 1 shows a
comparison of data obtained for defect-free model poly-
mer networks to the predictions eq 31 of model A and
eq 36 of model B. The result is unanimous. We therefore
believe eq 35 and model B to be the appropriate choice
for modeling confinement due to entanglements. The
shear modulus of an entangled network should thus be
given by44

where in contrast to ref 44 the various γp are no longer
free parameters but depend through eq 22 on a single
parameter: the strength l of the confining potential,
which is assumed to be homogeneous for all monomers.

The difficulty of this formal solution of the generalized
constrained fluctuation model for polymer networks is
hidden in the use of the generalized Rouse modes of the
phantom model, which are difficult to obtain for realistic
connectivities.46,47 A useful ansatz for end-linked net-
works is a separation into independent Flory-Einstein
respectively Rouse modes for the cross-links and net-
work strands.14,44 In fact, the simulation results pre-
sented in Figure 1 are based on such a decomposition.

For randomly cross-linked networks with a typically
exponential strand length polydispersity, the separation
into Flory-Einstein and single-chain Rouse modes
ceases to be useful. In this case, we can think of two
radically different strategies.

• To keep the network connectivity in the analysis.
For example, there is no principle reason why the
methods presented by Sommer et al.47 and Everaers14

could not be combined, to investigate the strain depen-
dence of constrained generalized Rouse modes in com-
puter simulations. Note, however, that this completely
destroys the self-averaging properties of the approxima-
tion used in ref 14. Analytic progress in the evaluation
of, for example, eq 38 for the entanglement contribution
to the shear modulus requires information on the
statistical properties of the eigenvalue spectra of net-
works generated by random cross-linking. To our knowl-
edge, the only available results were obtained numeri-
cally by Shy and Eichinger.48 Note that model C is
irrelevant, if one is able to carry out calculations with
the proper network eigenmodes.

• To average out the connectivity effects in tube
models for polymer networks.15 In the second part of
the paper, we will consider linear chains under the
influence of two types of confinement: network con-
nectivity and entanglements.

III. Tube Models

In SANS experiments of dense polymer melts, it is
possible to measure single chain properties by deuter-
ating part of the polymers.49 If such a system is first
cross-linked into a network and subsequently subjected
to a macroscopic strain, one can obtain information on
the microscopic deformations of labeled random paths
through the network.49 To interpret the results, they
need to be compared to the predictions of theories of
rubber elasticity. Unfortunately, for randomly cross-
linked networks it is quite difficult to calculate the
relevant structure factors even in the simplest cas-
es.12,50,51 Because the cross-link positions on different
precursor chains should be uncorrelated, Warner and
Edwards15 had the idea to consider a tube model, where
the cross-linking effect is “smeared out” along the chain.
To model confinement due to cross-linking, they used
(in our notation) model A, since this ansatz reproduces
the essential properties of phantom models (affine
deformation of equilibrium positions and deformation
independence of fluctuations). In contrast, Heinrich and
Straube25 and Rubinstein and Panyukov43 treated con-
finement due to entanglements using model B. Obvi-
ously, both effects are present simultaneously in poly-
mer networks. In the following, we will develop the idea
that in order to preserve the qualitatively different
deformation dependence of the two types of confinement,
they should be treated in a “double tube” model based
on our model C.

Before entering into a detailed discussion, we would
like to point out a possible source of confusion related

Figure 1. Excitation of constrained modes parallel and
perpendicular to the elongation at λ ) 1.5 as a function of the
mode degree of confinement 0 e γ e 1. The dashed (dotted)
lines show the predictions eq 31 of model A and eq 36 of model
B respectively for generalized Rouse modes of a phantom
network with identical connectivity. The symbols represent the
result of computer simulations of defect-free model polymer
networks.14 The investigated modes are single-chain Rouse
modes for network strands of length N ≈ 1.25Ne.

G ) Gph +
kBT

V
∑

p

γp
2 (48)
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to the ambiguous use of the term “tube” in the literature
(including the present paper). A real tube is a hollow,
cylindrical object, suggesting that in the present context
the term should be reserved for the confining potential
described by quantities such as êBi,vbp, l. It is in this sense
that we speak of an “affinely deforming tube”. However,
a harmonic confining tube potential is a theoretical
construction which is difficult to visualize. For example,
in the continuum chain limit used below, the forces
exerted “per monomer” become infinitely small corre-
sponding to êBi f ∞, l f 0. On the other hand, the term
tube is often associated with the tube “contents”, i.e.,
the superposition of the accessible polymer configura-
tions characterized via a locally smooth tube axis (the
equilibrium positions UBp) and a tube diameter dT
(defined via the fluctuations δBup). This second definition
refers to measurable quantities.49 Which kind of tube
we are referring to, will hopefully always be clear from
the context and the mathematical definition of the
objects under discussion.

In the case of linear polymers, the phantom model
reduces to the Rouse model with vanishing equilibrium
positions RBi ≡ 0. As a consequence, there are no strain
effects other than those caused by the confinement of
thermal fluctuations. In particular, the “intrinsic” phan-
tom modulus vanishes (see eq 5). Since the networks
are modeled as superpositions of independent linear
paths, we have to introduce confinement of type A in
order to recover the phantom network shear modulus
Gph in the absence of entanglements.

In the Rouse model, the Kirchhoff matrix takes the
simple tridiagonal form

and, depending on the boundary conditions, is diago-
nalized by transforming to sin or cos modes using the
transformation matrix

The eigenvalues of the diagonalized Kirchhoff matrix
(K̃)pp ) (S-1 K S)pp ) kp are given by

If we consider a path with given radius of gyration Rg
2,

the basic spring constant is given by k ) (N kBT/2Rg
2).

In the continuous chain limit (N f ∞), sums over
eigenmodes can be approximated by integrals. For
example, one obtains from eq 25 an expression for the
tube diameter

which could be further simplified, since in this limit the
springs representing a chain segment between two
nodes are much stronger than the springs realizing the
tube, i.e., k . l.

For normally distributed internal distances rbxx′ be-
tween points x ) n/N, x′ ) m/N on the chain contour
the structure factor is given by

In the present case, eq 26 reduces to

In the undeformed state

so that the structure factor is given by the Debye
function:

A. The Warner-Edwards Model. Warner and
Edwards15 used the replica method to calculate the
conformational statistics of long paths through ran-
domly cross-linked phantom networks. The basic idea
was to represent the localization of the paths in space
due to their integration into a network by a coarse-
grained tube-like potential. Recently, it was shown by
Read and McLeish34,35 that the same result could be
obtained along the lines of the following, much simpler
calculation, where we evaluate model A for linear
polymers.

Evaluation of the integrals in eqs 25 and 26 yields
for the deformation independent tube diameter and the
internal distances

We note that the latter equation can be rewritten in the
form

with a universal scaling function fA(y) which does not
depend explicitly on the deformation. Equation 59
measures the degree of affineness of deformations on
different length scales. Locally, i.e., for distances inside
the tube with Rg

2| x - x′| , dT
2 corresponding to y , 1,

the polymer remains undeformed. Thus, limyf0 f(y) )
0. Deformations become affine for Rg

2| x - x′| . dT
2 and

y . 1, where f(y) tends to one.

K ) k(-2 1 0 ... 0
1 -2 1 0 ...

···
0 ... 1 -2

) (49)

S ) (S)jp ) 1
xN

exp(iπ jp
N) (50)

kp ) 4k sin2(pπ
2N) (51)

dTR
2 ) 1

N ∫0

N
dp 1

kp + l

)
kBT

xl(4k + l)
≈ kBT

2xlk
(52)

S(qb, λ) ) ∫0

1
dx ∫0

1
dx′ ×

exp (-
1

2
∑

R ) 1

3

qR
2〈rxx′R

2(λ)〉) (53)

〈rxx′R
2(λ)〉 ) 1

N ∫-∞

∞
dp 〈upR

2(λ)〉|eiπpx - eiπpx′|2 (54)

〈rxx′R
2(λ ) 1)〉 ) 2Rg

2| x - x′| (55)

S(qb, λ ) 1) ) 2N
q4Rg

4
(exp(-q2Rg

2) - 1 + q2Rg
2) (56)

dTAR
2 )

kBT

2 xklA

(57)

〈rxx′R
2(λ)〉

2Rg
2

) λR
2|x - x′| +

(1 - λR
2)

dTAR
2

Rg
2

(1 - e-(Rg
2|x-x′|)/(dTAR

2)) (58)

〈rxx′R
2(λ)〉 - 〈rxx′R

2(1)〉

(λR
2 - 1)〈rxx′R

2(1)〉
) fA(Rg

2|x - x′|
dTA

2 )
fA(y) ) 1 + e-y - 1

y
(59)
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Furthermore, one obtains for the shear modulus and
the stress-strain relation

so that the Mooney-Rivlin parameters are simply given
by

B. The Heinrich-Straube/Rubinstein-Panyuk-
ov Model. Heinrich and Straube25 and Rubinstein and
Panyukov43 have carried out analogous considerations
for model B, i.e. an affinely deforming tube. The relation
between the strength of the springs lB and the tube
diameter in the unstrained state is identical to the
previous case. However, the tube diameter now becomes
deformation dependent:

Thus, the typical width of the fluctuations changes only
with the square root of the width of the confining
potential. Using equations eqs 54 and 36, one obtains
for the mean square internal distances:

Again, we can rewrite this result in terms of a universal
scaling function for the degree of affineness of the
polymer deformation:

Equation 67 shows that Straube’s conjecture31-33 fA(y)
) fB(y) is incorrect. However, the two functions are
qualitatively very similar.

For the shear modulus and the stress-strain relation,
we find

in agreement with Rubinstein and Panyukov.43 To
account for the network contribution to the shear
modulus, these authors add the phantom network
results to eqs 69 and 70. This leads to the following
relations for the Mooney-Rivlin parameters:43

Note that eq 70 holds only for λ ≈ 1. For large
compression or extension the approximation k . l (λ)
breaks down and one regains the result of Heinrich and
Straube:25

C. The “Double Tube” Model. In the following, we
discuss a combination of two different constraints, one
representing the network (model A) and therefore
deformation independent and the other representing the
entanglements (model B). Thus, we use model C to
combine the Warner-Edwards model with the Hein-
rich-Straube/Rubinstein-Panyukov model.

Evaluating eq 25 one obtains for the tube diameter

The deformation dependent internal distances are given
by

In this case, it is not possible to rewrite the result in
terms of a universal scaling function, because the
relative importance of the two types of confinement is
deformation dependent. Introducing Φ(λ) ) dTCR

4(λ)/
dTBR

4(λ), eq 75 can be rewritten as

For the elastic properties of the double tube model we
find

gA(λ) )
Fb2xklA

6
) GA (60)

GA ) 1
4

Fb2kBT

dTA
2

(61)

σT(λ) ) (λ2 - 1
λ)GA (62)

2C1 ) GA (63)

2C2 ) 0 (64)

dTBR
2(λ) ) λR

dTB
2

3
(65)

〈rxx′R
2(λ)〉

2Rg
2

) λR
2|x - x′| +

1
2
(λR

2 - 1)|x - x′|e-(Rg
2|x-x′|)/(dTBR

2(λ)) -

3
2
(λR

2 - 1)
dTBR

2(λ)

Rg
2

(1 -e-(Rg
2|x-x′|)/(dTBR

2(λ))) (66)

〈rxx′R
2(λ)〉 - 〈rxx′R

2(1)〉

(λR
2 - 1)〈rxx′R

2(1)〉
) fB(Rg

2|x - x′|
dTBR

2(λ) )
fB(y) ) 1 + 1

2
e-y + 3

2
e-y - 1

y
(67)

gB(λ) ) 1
8

Fb2kBT

λdTB
2

)
GB

λ
(68)

GB ) 1
8

Fb2kBT

dTB
2

(69)

σT(λ) ) (xλ - 1
xλ

+ λ - 1
λ)GB (70)

2C1 ) Gph + 1
2
GB (71)

2C2 ) 1
2
GB (72)

σT(λ) ) (λ - 1
xλ)GB (λ , 1, λ . 1) (73)

1
dTCR

4(λ)
) 1

dTAR
4

+ 1
dTBR

4(λ)
(74)

〈rxx′R
2(λ)〉

2Rg
2

) λR
2|x - x′| +

1
2
(λR

2 - 1)|x - x′|dTCR
4(λ)

dTBR
4(λ)

e-(Rg
2|x-x′|)/(dTCR

2(λ)) -

3
2
(λR

2 - 1)
dTCR

2(λ)

Rg
2

(1 - e-(Rg
2|x-x′|)/(dTCR

2(λ))) ×

dTCR
4(λ)(dTAR

4 + 2
3
dTBR

4(λ))
dTBR

4(λ)dTAR
4

(75)

〈rxx′R
2(λ)〉 - 〈rxx′R

2(1)〉

(λR
2 - 1)〈rxx′R

2(1)〉 (Rg
2|x - x′|

dTCR
2(λ)

, Φ(λ)) )

fA(y) + Φ(λ)(fB(y) - fA(y)) (76)
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Again, eq 78 only holds for moderate strains. Shear
modulus and the Mooney-Rivlin parameters are given
by

D. Comparison of the Different Tube Models. In
the following, we compare the predictions of the differ-
ent models for the microscopic deformations and the
macroscopic elastic properties from two different points
of view.

1. As a function of the network connectivity, i.e., the
ratio of the average strand length Nc between cross-links
to the melt entanglement length Ne. For this purpose,
we identify GA with the shear modulus of the corre-
sponding phantom network Gph:

where we use f ) 4 for our plots. Similarly, we choose
for GB a value of the order of the melt plateau modulus
Ge:

2. Assuming that the system is characterized by a
certain tube diameter dTC or shear modulus GC, we
discuss its response to a deformation as a function of
the relative importance 0 e Φ e 1 of the cross-link and
the entanglement contribution to the confinement

where Φ is of the order (1 + (Ne/Nc)2)-1.
1. Elastic Properties. Figure 2 shows the shear

modulus dependence on the ratio of the network strand
length Nc to the melt entanglement length Ne. As

expected GC crosses over from Gph for short strands to
Ge in the limit of infinite strand length. For comparison
we have also included the prediction of Rubinstein and
Panyukov, Gph + Ge. The shear moduli predicted by our
ansatz are always smaller than this sum. In particular,
we find G ) Gph for Nc , Ne. The physical reason is
that in a highly cross-linked network the typical fluc-
tuations are much smaller than the melt tube diameter.
As a consequence, the network does not feel the ad-
ditional confinement and the entanglements do not
contribute to the elastic response. Figure 3 shows
analogous results for the Mooney-Rivlin parameters C1
and C2 again in comparison to the predictions of
Rubinstein and Panyukov. Note that C2 is not predicted
to be strand length independent.

Figure 4 shows the reduced force in the Mooney-
Rivlin representation for different entanglement con-
tributions Φ to the confinement. For moderate elonga-
tions up to λ ≈ 2 the curves are well represented by the
Mooney-Rivlin form. For a given shear modulus, C1 and
C2 are a function of the entanglement contribution Φ

Figure 2. Langley plot of the shear modulus. The solid line
corresponds to the “double tube” model, the dotted line to the
Heinrich-Straube/Rubinstein-Panyukov model and the dashed
line to the phantom model. Ne represents the entanglement
length and Nc the cross-link length.

Figure 3. Plot of the parameters 2C1 and 2C2 of the Mooney-
Rivlin equation f(λ-1) ) 2C1 + 2C2λ-1 for the Rubinstein-
Panyukov model (dotted) and the “double tube” model (solid).

Figure 4. Mooney-Rivlin representation of the reduced force
for different values of Φ (from top to bottom: the Phantom
model (dashed line, Φ ) 0), the “double tube” model (solid lines,
Φ ) 1/3, 1/2, 3/4) and the Heinrich-Straube/Rubinstein-
Panyukov model (dotted line, Φ ) 1)).
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to the confinement:

2. The Tube Diameter. Since eq 47 can be written
in the form

a plot of dTC
-2 vs Ne/Nc looks very similar to Figure 2.

The deformation dependence of the tube diameter
(Figure 5) takes the form:

In the parallel direction, the entanglement contribution
to the confinement vanishes for large λ so that limλf∞
dTC|(λ) ) dTA|. On the other hand, the entanglements
become relatively stronger in the perpendicular direc-
tion with limλf∞ dTC⊥(λ) ) dTB⊥(λ).

3. Microscopic Deformations and Structure
Functions. Figure 6 compares the universal scaling
functions of the Warner-Edwards and Heinrich-
Straube/Rubinstein-Panyukov model defined by eqs 59
and 67.

More important for the actual microscopic deforma-
tions than the difference between these two functions
is the fact, that the distances are scaled with the
deformation dependent tube diameter. As a conse-
quence, deformations parallel to the elongation are
smaller in model B than in model A, while the situation
is reversed in the perpendicular direction. In the general

case (eq 76 of model C), the results are further compli-
cated by the deformation dependent mixing of the two
confinement effects. Nevertheless, eqs 59, 67, and 76
should be useful for the analysis of simulation data
where real space distances are directly accessible.

Experimentally, the microscopic deformations can
only be measured via small-angle neutron scatter-
ing.31,32 Unfortunately, there seems to be no way to
condense the structure functions eq 53 which result
from eqs 58, 66, and 75 for different strains into a single
master plot. Figures 7 and 8 show a comparison for
three characteristic values of λ. Qualitatively, the
results for the three models are quite similar. In
particular, they do not predict Lozenge-like patterns for
the two-dimensional structure functions as they were

Figure 5. Tube diameter dTC(Φ,λ) ) ((1 - Φ) + Φ/λ2)-1/4 in
parallel (upper curves) and perpendicular stretching direction
for different elongation ratios λ whereas Φ can be expressed
by the entanglement length Ne and the cross-link length Nc
by Φ ) dTC

4/dTB
4 ) 1/(1 + (Ne/Nc)2) using dTB

2/dTA
2 ) Ne/Nc.

The dashed curve corresponds to the Warner-Edwards model,
i.e., dTC(Φ ) 0,λ), the dotted curve corresponds to the Hein-
rich-Straube/Rubinstein-Panyukov model, i.e., dTC(Φ ) 1,λ),
and the solid line represents the “double tube” model with Φ
) 3/4.

Figure 6. Comparison of the universal scaling functions of
eqs 59 and 67 for the Warner-Edwards model (dashed) and
the Heinrich-Straube/Rubinstein-Panyukov model (dotted)
with y ) (Rg

2|x - x′|)/dTA/B
2.

Figure 7. Kratky plots of the different structure factors in
parallel and perpendicular stretching direction with Rg/dT )
6: Warner-Edwards model (dashed line), Heinrich-Straube/
Rubinstein-Panyukov model (dotted line), and “double tube”
model with Φ ) 3/4 (solid line). The upper curves correspond
to the perpendicular stretching direction.
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observed by Straube et al.32 In particular, we agree with
Read and McLeish34 that the interpretation of Straube
et al.31,32,36 is based on an ad hoc approximation in the
calculation of structure functions from model B. In
principle, their alternative idea, to investigated the
influence of dangling ends on the structure-function
within models A and B,34 can be easily extended to
model C. Judging from the small differences between
the models (Figures 7 and 8) and the results in ref 34,
this would probably allow one to obtain an excellent fit
of the data and to correctly account for the deformation
dependence of the tube.36 However, since the lozenge
patterns were also observed in triblock systems where
only the central part of the chains was labeled,33

dangling ends seem to be too simple an explanation. At
present it is therefore unclear, if the lozenge patterns
are a generic effect or if they are due to other artifacts
such as chain scission.36,37 Simulations14,28-30 might help
to clarify this point.

IV. Conclusion
In this paper, we have presented theoretical consid-

erations related to the entanglement problem in rub-
ber-elastic polymer networks. More specifically, we
have dealt with constrained fluctuation models in
general and tube models in particular. The basic idea
goes back to Edwards,21 who argued that on a mean-
field level different parts of the network behave, as if
they were embedded in a deformation-dependent elastic
matrix which exerts restoring forces toward some rest
positions. In the first part of our paper, we were able to
show that the generalized Rouse modes of the corre-
sponding phantom network without entanglement re-
main eigenmodes in the presence of the elastic matrix.
In fact, the derivation of eq 14, which is the Hamiltonian
of the exactly solvable constrained mode model (CMM),44

provides a direct link between two diverging develop-
ments in the theory of polymer networks: the ideas of
Edwards, Flory, and others on the suppression of
fluctuations due to entanglements and the consider-
ations of Eichinger,11 Graessley,45 Mark,46 and others
on the dynamics of (micro) phantom networks. An
almost trivial conclusion from our theory is the observa-
tion, that it is not possible to estimate the entanglement
effects from the knowledge of the absolute strength of
the confining potentials alone. Required is rather the
knowledge of the relative strength which in turn is a
function of the network connectivity in eq 38.

Unfortunately, it is difficult to exploit our formally
exact solution of the constrained fluctuation model for
arbitrary connectivity, since it requires the eigenvalue
spectrum of the Kirchhoff matrix for randomly cross-
linked networks. In the second part of the paper we have
therefore reexamined the idea of Heinrich and Straube25

to introduce entanglement effects into the Warner-
Edwards model15 for linear, random paths through a
polymer network, whose localization in space is modeled
by a harmonic tube-like potential. In agreement with
Heinrich and Straube,25 and with Rubinstein and
Panyukov43 we have argued that in contrast to confine-
ment due to cross-linking, confinement due to entangle-
ments is deformation dependent. Our treatment of the
tube model differs from previous attempts in that we
explicitly consider the simultaneous presence of two
different confining potentials. The effects are shown to
be nonadditive. From the solution of the generalized
tube model we have obtained expressions for the mi-
croscopic deformations and macroscopic elastic proper-
ties which can be compared to experiments and simu-
lations.

While we believe to have made some progress, we do
not claim to have solved the entanglement problem
itself. For example, it remains to be shown how the
geometrical tube constraint arises as a consequence of
the topological constraints on the polymer conforma-
tions. However, even on the level of the tube model, we
are guilty of (at least) two possibly important omis-
sions: (i) we have neglected fluctuations in the local
strength of the confining potential, and (ii) we have
suppressed the anisotropic character of the chain motion
parallel and perpendicular to the tube. In the absence
of more elaborate theories, computer simulations along
the lines of refs 14, 28, 29, 30, and 47 may present the
best approach to a quantification of the importance of
these effects.
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