《信号处理理论及技术》课程教学大纲 课程英文名称: Signal Processing Theory and Technology

课程代码: 课程性质: 专业学位课

适用专业:信息与通信工程、新一代电子信 开课单位:信息工程学院

息技术、通信工程

总学时数: 48 学时 总学分数: 3.0

编写年月: 2020 年 9 月 修订年月: 2022 年 12 月

执 笔: 何家峰 课程负责人: 何家峰 专业负责人:

一、课程简介和教学目标

1、课程简介

信号处理理论及技术是信息与通信工程、新一代电子信息技术、通信工程等专业的专业学位课。本课程的主要教学目的包括:掌握现代信号处理的基本概念、基本理论与方法;具备一定的现代信号处理算法设计与实现的能力。

I. Introduction

Signal processing theory and technology is a major course of information and communication engineering, the new generation of electronic information technology, communication engineering. The main teaching objectives of this course include: master the basic concepts, basic theories and methods of modern signal processing, and have certain ability to design and implement modern signal processing algorithms.

2、课程目标

课程目标 1 掌握现代信号处理的基本概念、基本原理与方法,重点学习信号检测、现代谱估计、自适应滤波器、时频分析等相关算法及典型应用。

课程目标 2 具有一定的算法设计及仿真实现能力。

二、课程教学内容及组织

章节序号	学时	教学内容	教学方法 和组织方式	考核 环节
第章: 机信号础	6	信号分类;统计量;两个信号的比较; 具有随机输入的线性系统。 重点 :白噪声;广义平稳性;课程学习 方法。 难点 :正交变换。	 教师讲授; 课堂练习; <li课堂提问。< li=""> </li课堂提问。<>	1. 编程作业; 2. 项目作业; 3. 期末考试。
第二: 信号 估理论	6	估计子的性能; Fisher 信息与 Cramer-Rao 不等式; Bayes 估计; 最大似然估计; 线性均方估计、最小二乘估计。重点: 估计子性能评价; 通用估计方法。难点: 线性均方估计与基本最小二乘估计的区别; Bayes 估计。	1. 教师讲授; 2. 课堂练习; 3. 课堂提问。	1. 编程作业; 2. 项目作业; 3. 期末考试。
第章 现功谱计	6	非参数化谱估计; 平稳 ARMA 过程; 平稳 ARMA 过程的功率谱密度; ARMA 谱估计。 重点: 平稳 ARMA 过程; ARMA 谱估计。 难点: 基于奇异值分解的 ARMA 模型参数总体最小二乘估计	1. 教师讲授; 2. 课堂练习; 3. 课堂提问; 4. 案例教学。	1. 编程作业; 2. 项目作业; 3. 期末考试。
第章 自应波	10	匹配滤波器;维纳滤波器;卡尔曼滤波器;LMS 自适应滤波器;RLS 自适应滤波器典型应用。 重点:卡尔曼滤波器;LMS 自适应滤波器;RLS 自适应滤波器; LMS 自适应滤波器。 雅点:卡尔曼滤波器的原理;自适应均衡器的原理。	1. 教师讲授; 2. 课堂练习; 3. 课堂提问;	1. 编程作业; 2. 项目作业; 3. 期末考试。
第章线时分	10	信号的局部变换;解析信号;短时傅里叶变换;Gabor变换;分数阶傅里叶变换;小波变换;经验模态分解及David-Huang变换。 重点:解析信号;短时傅里叶变换;Gabor变换。 难点:分数阶傅里叶变换;经验模态分解及David-Huang变换。	1. 教师讲授; 2. 课堂练习; 3. 课堂提问; 4. 案例教学。	1. 编程作业; 2. 项目作业; 3. 期末考试。

章节序号	学时	教学内容	教学方法 和组织方式	考核 环节
第章 阵 列 信 理	6	阵列的坐标表示;多重信号分类; MUSIC 方法的扩展。 重点: MUSIC 方法。 难点: MUSIC 改进方法。	1. 教师讲授; 2. 课堂练习; 3. 课堂提问; 4. 案例教学。	1. 编程作业; 2. 项目作业; 3. 期末考试。
编作与目业报 程业项作汇	4	编程作业与项目作业汇报。	 学生汇报; 教师点评; 学生讨论。 	
合计	48			

三、本课程与其它课程的联系与分工

先修课程: 随机过程; 矩阵分析; 最优信号处理。

后续课程:通信信号处理;现代通信理论与技术;多传感器信息融合及其应用;机器嗅觉原理与技术;多天线无线通信原理。

四、课程教学方法

本课程是信息与通信工程、新一代电子信息技术、通信工程等专业的的专业必修课,是一门侧重理论方法的课程。采用课堂讲授、案例教学、编程作业、项目作业等多种教学形式。

1. 课堂讲授

在讲授过程中,注重数学含义或物理含义的阐释,穿插例题讲解和课堂练习; 注重联系工程应用实际;注重前沿科研深入课堂教学。这些授课手段,促进学生 对现代信号处理方法的掌握和理解,促进学生的知识应用能力和创新能力的培养。

2. 案例教学

设置了5个教学案例,并组织学生进行相关研讨,启发学生思维。

3. 编程作业

布置编程作业,增强学生信号处理MATLAB编程实践能力。

4. 项目作业

项目作业要求学生在算法上有一定的改进,或者做出特色。

5. 课程评价反馈

课程开展过程中和课程结束时,通过学生访谈、问卷调查等形式进行课程评价反馈,根据评价结果改进教学方法,调整教学手段。

五、建议教材及教学参考书

- [1] 张贤达。《现代信号处理(第3版)》。清华大学出版社,2015年。
- [2] Steven M.Kay。统计信号处理基础——估计与检测理论。电子工业出版社, 2014 年。
- [3] Steven M.Kay。统计信号处理基础——实用算法开发。电子工业出版社,2014年。
- [4] 李益华。 MATLAB 辅助现代工程数字信号处理(第 2 版)。西安电子科技大学出版社,2010年。

六、考核环节评价标准

本课程成绩包括平时成绩(考勤、编程作业、项目作业)和期末考试成绩。 平时成绩占比 30%,其中考勤 10%,编程作业 10%,项目作业 10%。期末考试 占比 70%,题型包括简答题(21%)和计算证明题(49%)。评分标准具体见试 卷。

编程作业和项目作业的评分标准如下:

编程作业评分标准表

满住下亚叶刀 你在 农					
观测点	A	В	C	D	E
观测点	90-100 分	80-89 分	70-79 分	60-69 分	59 分以下
完成进度	提前完成。	保量按时完	缺少题目能按	延迟完成。	补交。
(权重 0.2)		成。	时完成。		
方案正确性 (权重 0.5)	能够解决 90% 以上主要问 题,思路清晰, 计算正确。	能够解决 80% 以上主要问 题,主要思路、 过程和计算过 程基本正确。	能够解决 70% 主要问题,主 要思路、过程 和计算过程基 本正确。	能够解决 60% 以上主要问 题。	不能解决问题。
课堂汇报 (权重 0.2)	汇报流程完 整,表述流畅。	汇报流程完 整,表述流畅。	汇报流程完整 性一般,表述 流畅性一般。	汇报基本完整 流畅。	汇报不完整流 畅。
作业完成态度 (权重 0.1)	书写工整、清 晰,符号、单 位等按规范执 行。	书写清晰,主 要符号、单位 等能按规范执 行。	书写基本清晰,主要符号、单位等按基本能按规范执行。	书写能辨识, 部分符号、单 位等按规范执 行。	书写不能辨识,符号、单位等不按照规范。

项目作业评分标准表

观测点 A	В	С	D	E
-------	---	---	---	---

	90-100 分	80-89 分	70-79 分	60-69 分	59 分以下
创新性	创新性好。	创新性较好。	创新性一般。	没有创新。	没有创新。
(权重 0.4)					
方案正确性	方案能够解决	方案主要思	方案基本可	方案中有明显	方案不太可
(权重 0.3)	问题,思路清	路、过程和计	行。	漏洞。	行。
	晰,计算正确。	算过程正确。			
课堂汇报	汇报流程完	汇报流程较为	汇报流程完整	汇报基本完整	汇报不完整流
(权重 0.2)	整,表述流畅。	完整, 表述较	性一般,表述	流畅。	畅。
		流畅。	流畅性一般。		
工作态度	项目报告按规	项目报告主要	项目报告规范	项目报告基本	项目报告不按
(权重 0.1)	范撰写,书写	部分按规范撰	性一般。	按规范撰写,	规范撰写,不
	工整、清晰,	写,书写清晰,		能辨识,部分	能辨识,符号、
	符号、单位等	主要符号、单		符号、单位等	单位等不按照
	按规范执行。	位等按规范执		按规范执行。	规范。
		行。			