
Special Methods

• Polymorphism

• Polymorphic Functions (__str__, __repr__)

• Operator Overloading (+ and __add__)

• More Special Methods

Polymorphism

Polymorphism

• Ad Hoc Polymorphism

• Parametric Polymorphism

• Inclusion Polymorphism

Polymorphism

• Ad Hoc Polymorphism

• Parametric Polymorphism

• Inclusion Polymorphism

foo(int) { xxx }

foo(string) {xx xxx xx}
e.g., Overloading:

Polymorphism

• Ad Hoc Polymorphism

• Parametric Polymorphism

• Inclusion Polymorphism

foo(int) { xxx }

foo(string) {xx xxx xx}
e.g., Overloading:

e.g., Generic functions: T foo(T x, T y) {
return (x > y) ? x : y;

}

foo<int>(3,7)
foo<char>(‘h’,’k’)

Template <typename T>

Polymorphism

• Ad Hoc Polymorphism

• Parametric Polymorphism

• Inclusion Polymorphism

foo(int) { xxx }

foo(string) {xx xxx xx}
e.g., Overloading:

e.g., Generic functions: T foo(T x, T y) {
return (x > y) ? x : y;

}

foo<int>(3,7)
foo<char>(‘h’,’k’)

Subtypes and inheritance: T v; // T has many subtypes

v.foo();

… …

Template <typename T>

Polymorphism

• Ad Hoc Polymorphism

• Parametric Polymorphism

• Inclusion Polymorphism

foo(int) { xxx }

foo(string) {xx xxx xx}
e.g., Overloading:

e.g., Generic functions: T foo(T x, T y) {
return (x > y) ? x : y;

}

foo<int>(3,7)
foo<char>(‘h’,’k’)

Subtypes and inheritance: T v; // T has many subtypes

v.foo();

… …

Template <typename T>

Next, we introduce two instances of ad hoc polymorphism to
help illustrate some important special methods in Python:
polymorphic function (__str__, __repr__)
operator overloading (__add__)

String Representations

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

•The str is legible to humans
•The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

The repr String for an Object

repr: string representation of Python object. For most object types,
eval will convert it back to that object, eval(repr(obj)) == obj

The result of calling repr on a value is what Python outputs
in an interactive session

The str String for an Object
Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python
prints using the print function:

>>>print(half)
1/2

The str String for an Object
Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python
prints using the print function:

>>>print(half)
1/2

The str String for an Object
Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

The result of calling str on the value of an expression is what Python
prints using the print function:

>>>print(half)
1/2

repr is to be unambiguous
str is to be readable

Polymorphic Functions

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

Polymorphic functions behave differently depending on the types of
the arguments come in, while parametric functions execute the same
code for arguments of any admissible types

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic:
They apply to any object and do not have much logic, and they defer to
the object (comes in) to decide what to do

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic:
They apply to any object and do not have much logic, and they defer to
the object (comes in) to decide what to do

repr invokes a zero-argument method __repr__ on its argument

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic:
They apply to any object and do not have much logic, and they defer to
the object (comes in) to decide what to do

repr invokes a zero-argument method __repr__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

Polymorphic Functions
Polymorphic function:
A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic:
They apply to any object and do not have much logic, and they defer to
the object (comes in) to decide what to do

repr invokes a zero-argument method __repr__ on its argument

>>> half.__repr__()
'Fraction(1, 2)'

str invokes a zero-argument method __str__ on its argument

>>> half.__str__()
'1/2' >>> from fractions import Fraction

>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)
'1/2'

Implementing repr and str
The behavior of repr is slightly more complicated than invoking __repr__ on its
argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

Implementing repr and str

def repr(x):
return type(x). _repr (x)

def repr(x):
return x. _repr ()

def repr(x):
return type(x). _repr ()

def repr(x):
return super(x). _repr ()

The behavior of repr is slightly more complicated than invoking __repr__ on its
argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found
• Question: How would we implement this behavior?

def repr(x):
return x. _repr (x)

Implementing repr and str

def repr(x):
return type(x). _repr (x)

def repr(x):
return x. _repr ()

def repr(x):
return type(x). _repr ()

def repr(x):
return super(x). _repr ()

The behavior of repr is slightly more complicated than invoking __repr__ on its
argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found
• Question: How would we implement this behavior?

def repr(x):
return x. _repr (x)

Implementing repr and str

def repr(x):
return type(x). _repr (x)

def repr(x):
return x. _repr ()

def repr(x):
return type(x). _repr ()

def repr(x):
return super(x). _repr ()

The behavior of repr is slightly more complicated than invoking __repr__ on its
argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found
• Question: How would we implement this behavior?

def repr(x):
return x. _repr (x)

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored
• If no __str__ attribute is found, uses repr

string

• Question: How would we implement this
behavior?

Implementing repr and str

def repr(x):
return type(x). _repr (x)

def repr(x):
return x. _repr ()

def repr(x):
return type(x). _repr ()

def repr(x):
return super(x). _repr ()

The behavior of repr is slightly more complicated than invoking __repr__ on its
argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found
• Question: How would we implement this behavior?

def repr(x):
return x. _repr (x)

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored
• If no __str__ attribute is found, uses repr

string

• Question: How would we implement this
behavior?

demo_1

Operator Overloading

Operator Overloading

13

Operator overloading is to give the operator extended meaning beyond
its predefined operational meaning.

Operator Overloading

13

e.g., adding instances of user-defined classes invokes _add _ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

Operator overloading is to give the operator extended meaning beyond
its predefined operational meaning.

Operator Overloading

13

e.g., adding instances of user-defined classes invokes _add _ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

Operator overloading is to give the operator extended meaning beyond
its predefined operational meaning.

Operator ‘+’ is overloaded by __add__ method when ‘+’ is used to
add user-defined objects

Operator Overloading

13

e.g., adding instances of user-defined classes invokes _add _ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

Operator overloading is to give the operator extended meaning beyond
its predefined operational meaning.

Operator ‘+’ is overloaded by __add__ method when ‘+’ is used to
add user-defined objects

A + B, different behaviors of this adding expression may exhibit,
depending on the types of the operands (A or B). Thus we say
operator overloading is a kind of polymorphism.

Operator Overloading

13

e.g., adding instances of user-defined classes invokes _add _ method

>>> Ratio(1, 3) + Ratio(1, 6)
Ratio(1, 2)

>>> Ratio(1, 3).__add__(Ratio(1, 6))
Ratio(1, 2)

Operator overloading is to give the operator extended meaning beyond
its predefined operational meaning.

Operator ‘+’ is overloaded by __add__ method when ‘+’ is used to
add user-defined objects

A + B, different behaviors of this adding expression may exhibit,
depending on the types of the operands (A or B). Thus we say
operator overloading is a kind of polymorphism.

demo_2

Special Method Names in Python (Summary)

__init__

__repr/str__

__add/radd__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression

Method invoked to add one object to another

Method invoked to convert an object to a float (real number)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

More Special Methods:

Certain names are special because they have built-in behaviors
These names always start and end with two underscores

http://docs.python.org/py3k/reference/datamodel.html

