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Next, we introduce two instances of ad hoc polymorphism to
help illustrate some important special methods in Python:
polymorphic function (__str__, __repr__)
operator overloading (__add__)
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String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself  

Strings are important: they represent language and programs  

In Python, all objects produce two string representations:

•The str is legible to humans
•The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always



The repr String for an Object

repr: string representation of Python object. For most object types,
eval will convert it back to that object, eval(repr(obj)) == obj

The result of calling repr on a value is what Python outputs 
in an interactive session



The str String for an Object
Human interpretable strings are useful as well:

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> repr(half)
'Fraction(1, 2)'
>>> str(half)  
'1/2'

The result of calling str on the value of an expression is what Python 
prints using the print function:

>>>print(half)  
1/2
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repr is to be unambiguous
str is to be readable
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Special Method Names in Python (Summary)

__init__

__repr/str__

__add/radd__

__float__

Method invoked automatically when an object is constructed

Method invoked to display an object as a Python expression  

Method invoked to add one object to another

Method invoked to convert an object to a float (real number)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

More Special Methods:

Certain names are special because they have built-in behaviors
These names always start and end with two underscores

http://docs.python.org/py3k/reference/datamodel.html

